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Abstract

In recent years, a huge body of research has been devoted to the challenging problem
of integrating data and processes to achieve a more comprehensive understanding
on their concrete interplay within business process management. This requires
to investigate how data influence the process behavior, and how the control flow
of the process impacts on the data it queries and manipulates. The development
of theoretical frameworks for the formalization and the verification of such Data-
Aware Processes (DAPs) has consequently flourished. These frameworks present
two main drawbacks: first, the results obtained are usually achieved at a quite
abstract level, with strong assumptions on the underlying model that do not match
those of front-end languages used in practice; second, the studied verification
techniques, when concretely implemented, are developed ad hoc, without appealing
to well-established automatic tools.

In this thesis, we tackle this twofold problem by attacking the verification of
DAPs with solid techniques for the verification of infinite-state systems. To do
so, we start from the observation that many approaches to symbolic reasoning for
infinite-state systems have been developed in the realm of model checking, providing
not only solid foundations to the verification tasks of interest, but also highly
efficient technologies, such as those stemming from SMT solvers.

In this respect, the thesis aims at bridging the gap existing between DAP
verification and SMT-based infinite-state model checking, focusing in particular
on safety. This amounts to establishing whether a system can reach an undesired,
unsafe configuration. We propose a general framework for modeling and verifying
DAPs that relies on model-theoretic algebra and on SMT solving. To make our
verification machinery efficient, we develop sophisticated algorithmic techniques that
build on and extend well-established automated reasoning methods. We demonstrate
the feasibility of our approach by showing its implementation in the state-of-the-art
mcmt model checker: we provide a preliminary evaluation by testing the mcmt
capabilities against a DAP benchmark. Finally, we apply our general framework to
business process management: we introduce formal and operational settings that are
based on standard languages and/or can capture advanced modeling capabilities.
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1
Introduction

1.1 Overview
The thesis brought forward in this document is that:

Principles, methods and techniques from automated reasoning and
Satisfiability Modulo Theories (SMT) can be effectively employed to lay
solid foundations and to develop concrete tools for the formalization and
verification of infinite-state systems arising from the interplay between
the control flow of a (business) process and the data it queries and
manipulates.

1.1.1 Finite-State Model Checking

Formal verification is one of the most studied and prolific research fields at the
intersection of computer science, artificial intelligence and mathematics: its goal is
to provide automated techniques and methods for analyzing and verifying complex
systems against some property of interest. Since the eighties, several approaches to
formal verification have been introduced and developed: thanks to its successful
applications to hardware and software systems, model checking [CGP01; Cla+18],
based on the use of mathematical logic for representing models and properties,
has gained increasing attention, becoming one of the most famous and celebrated
approaches. After the seminal work by Pnueli [Pnu81] in the context of temporal
logic specifications, and the pioneering study carried out by Clarke, Emerson [CE81;
CES86] and Sifakis [QS82], a plethora of different frameworks and techniques has
been introduced in the context of model checking, depending on the specific domain
under investigation and the type of specification language employed. In most cases,
the aim of these verification approaches is to exhaustively and automatically check

1
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whether the hardware or software models to verify meet some given specification
represented by formulae expressed in a suitable formal language.

Traditional model checking techniques focus on assessing whether some temporal
properties are satisfied in intrinsically finite-state systems [QS82; Cla+01]. This
approach relies on the assumption that in most cases the systems to verify can be
abstractly described by means of finite-state transition systems. Finite-state models
allow one to employ explicit search procedures in the space of all configurations
(which is finite) in order to detect if, for example, some unsafe state can be
reached starting from some initial state of the system. Naively, since the state
space is finite, this exploration can be performed via explicit graph search. More
practically, in many software contexts, where the executions of the systems are
only considered from the point of view of their control flows and, hence, they
can be represented via finite flowcharts, sophisticated techniques for a smart and
exhaustive exploration of the state space are sufficient to guarantee that these
approaches are successful [CG87; Bur+92; CGL94].

Verification of Data-Aware Processes

In recent years, a growing number of application domains asks for automated
verification techniques that do not just consider the control flow dimension, but also
take into consideration the manipulation of data along the system executions and
how data influence them. From a theoretical perspective, the development of formal,
abstract frameworks for attacking the problem of verifying so-called Data-Aware
Processes (DAPs) has consequently flourished [BH+13; Hul08; Via09; DDV12;
CDGM13; Deu+18], leading to a wide plethora of formal models depending on how
the data and process components, as well as their interplay, is actually represented.
What all these frameworks have in common is that they strive to focus on very
general DAP models that formalize abstract dynamic systems (i.e., the process
component) interacting with data persistent storage (i.e., the data component): in
these models, the concept of “process” should be interpreted in an abstract sense, as
a (possibly undetermined) mechanism that guides the evolution of a dynamic system.

We discussed already how traditional model checking can successfully attack
the problem of verifying finite-state systems. One may wonder whether formal
frameworks for verifying DAPs can employ the same techniques. Comprehensive
approaches that aim at applying model checking techniques to the formal verification
of DAPs should then reflect the possibility of expressing and verifying properties
that simultaneously account for the data and the process perspectives, and most
importantly for their interaction. However, due to the presence of data, DAP models
are intrinsically infinite-state: the content of a relational database is typically finite
but its size is unbounded and unknown (since a new tuple can always be added
to some relation using data elements taken from infinite domains) and its size
cannot be foreseen a priory; in addition, many real-world scenarios often require
the presence of possibly fresh data values (e.g., string, new identifiers, integer or
real numbers) injected into the process by external users. In such sophisticated
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settings, explicit model checking is not possible anymore: exhaustive search and
graph exploration-based procedures cannot be applied, since they need to visit an
infinite state space. Also traditional approaches in data management and ontologies
do not help here, since they typically investigate static, structural aspects of a
domain of interest, disregarding dynamic aspects [AHV95; Baa+03]. In the line
of research of DAP verification, the results obtained for the formal verification of
such integrated systems are still quite fragmented, since they consider a variety
of different assumptions on the model and on the static analysis tasks [CDGM13;
Deu+18]. In many cases, these assumptions are quite strong when compared with
both concrete business process and data management models.

During the last two decades, while theoretical frameworks for DAPs were studied,
a huge body of research has been dedicated to the challenging problem of reconciling
data and business process management within contemporary organizations [Ric10;
Dum11; Rei12]. More specifically, in the context of Business Processes Management
(BPM) it has become more and more important to study multi-perspective models
that do not just conceptually account for the control-flow dimension of the concrete
business process of interest, but also consider the interplay with data [CDGM13]: in
contrast with abstract DAPs, these models are more focused on concrete processes
as they are interpreted by stakeholders and BPM practitioners in real companies.
Business processes can be defined as a set of logically related tasks performed
within an organization to jointly realize a business goal for a particular customer
or market [Dum+18]. Traditionally, BPM models are also formalized using pure
control-flow models, ignoring the effects that data can cause to the evolution of
the process, i.e., neglecting how data are manipulated during the execution of
tasks, and how the executability of tasks is affected by data-related conditions. To
overcome this fundamental limitation, in the last decade many concrete languages
and corresponding formalisms have been proposed to represent business processes
where the data and the control-flow dimension are both considered as first-class
citizens. One important challenge that naturally arises is how to formally verify such
business processes enriched with data: in this respect, it seems natural to employ
the abstract frameworks developed for DAPs, and to try to adapt these frameworks
to the desired BPM-based application domains (see for some attempts in this
direction, e.g., [Deu+09; Dam+11; Sol+13; AV13]). However, this adaption is quite
challenging because of the lack of a comprehensive framework for the verification of
DAPs that is able to capture most of the essential features of business process (BP)
data-aware extensions. Moreover, one should also consider that currently there
are few theoretical frameworks that also support an implemented tool for concrete
verification, which is one of the desiderata for every model checking application
domain. Finally, an orthogonal challenging dimension regards the abstract flavor
of these frameworks and their modeling constructs, which often depart from those
offered by process and data modeling standard languages used by BPM practitioners,
e.g., the Business Process Model and Notation (BPMN), and data management
masters, e.g. the Structured Query Language (SQL). In fact, it is essential to rely
on the standard languages used in practice when dealing with real applications,
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given the assumption that model checking should have a big impact in guaranteeing
the correctness and trustworthiness of concrete systems.

Infinite-state Model Checking: from Parameterized Systems to SMT
Verification

In parallel, in the nineties, a completely separated line of research in formal
verification started to investigate how to attack the problem of verifying infinite-state
systems in general, disregarding the data perspective. A particularly interesting
class of infinite-state systems is given by parameterized systems [AD16]. Such
systems can be seen as transition systems that are parametric in the number
n of components (these components are called parameters): such components
can behave independently of each other or interact among them following the
system topology. In this context, the main goal of parameterized verification is to
provide automatic verification methods to prove trustworthiness of these parametric
transition systems regardless of the number of their components: these systems are
considered trustworthy if they conform to some given formal specification, which is
usually expressed, as in traditional model checking, via temporal properties written
in a suitable logical language. Contrary to what happens in finite-state model
checking, parameterized verification is undecidable in general. The verification
problem for parameterized systems has been studied extensively, and a number of
decidability results are known for various kinds of specifications. For example, it
is decidable for forms of regular specifications [Esp+17] but undecidable even for
stuttering-insensitive properties such as LTL\X formulae [EK03] if asynchronous
rendezvous is allowed. As summarized in [BJK15], decidability results for the
verification of parameterized systems are based on reduction to finite-state model
checking via abstraction [PXZ02; Joh+12; ADR07; Abd+07], cutoff computations
(a bound on the number of instances that need to be verified [EN03; AHH16]), or
by proving that they can be represented as well-structured transition systems
[FS01; Abd+96].

Another successful way for tackling infinite-state model checking consists of
providing a symbolic setting [McM93] where to verify properties: the main idea is
to represent infinitely many states in a symbolic way, i.e., using logical formulae.
Thanks to this representation, the exploration of the state space does not need to
be explicitly carried out, but it can be performed symbolically.

One of the most studied techniques for exploring the state space and verifying
symbolic systems is interpolation [McM03; McM06]. Although this notion has a
long-standing tradition in the mathematical logic literature [Cra57], symbolic model
checking via interpolation was only introduced by McMillan in his seminal paper
in 2003 [McM03]. In this paper, McMillan provides a fully SAT-based method
for performing unbounded symbolic model checking tasks. This method consists
of computing interpolants for exploring the state space: indeed, interpolants are
used to over-approximate the symbolic sets of reachable states through transitions



1. Introduction 5

from the initial configurations. In the last fifteen years, interpolation has been well-
studied for proving correctness of programs in the context of Satisfiability Modulo
Theories (SMT) [BT18], an emerging area in computational logic: the SMT problem
consists of deciding the satisfiability of logical formulae with respect to combinations
of relevant background first-order logic (FOL) theories. Indeed, it is possible to
translate preconditions, postconditions, loop conditions, and assertions of software
programs into suitable logical formulae modulo specific (combinations of) theories,
so as to reduce to SMT the problem of assessing the correctness of such programs.

SMT-based model checking has been proved to be particularly successful for
verifying infinite-state systems. Besides interpolation, the state of the art of SMT-
based model checking includes a wide range of methods, whose implementations
use SMT solvers as their underlying engine. In this thesis, we will focus only
on one of these methods, i.e. the backward reachability procedure, where the
exploration of the state space is performed by iteratively regressing (i.e., going
backward) the bad states of the system. Nevertheless, we remark that there is a
plethora of other prominent methods that are based on forward reachability, such
as K-induction [SSS00] and IC3 [Bra11a].

In order to verify DAPs, we will consider the SMT-based formal framework of
array-based systems [Ghi+08; GR10a], where infinite-state transition systems are
implicitly specified using a declarative, logic-based formalism, where arrays are the
central notion. The technique employed to verify such systems is based on an SMT-
based version of the backward reachability procedure, and it was successfully applied
to a vast class of infinite-state and parameterized systems, such as mutual exclusions
protocols [GR10a], timed [CGR10] and fault-tolerant [Alb+12b] distributed systems,
and imperative programs [AGS17].

Main Goal of the Thesis

As argued before, the verification problem for Data-Aware Processes has recently
gained increasing attention, also motivated by BPM applications. Several approaches
have been proposed for attacking this problem, but they usually present two
significant limitations. First, the employed verification techniques are developed
ad hoc, and do not rely on well-established methods and already implemented
and state-of-the-art technologies. Second, these frameworks are usually studied
at a quite abstract level, which makes it challenging to connect them to the
standard front-end languages used in practice. To summarize, there is the lack of a
universal and comprehensive approach to verify DAPs via a sufficiently expressive
formalism that natively supports effective techniques and can encode “front-end”
languages and models.

At the same time, many approaches to symbolic reasoning for infinite-state
systems have been successfully applied to different classes of models, such as
parameterized systems. Most of these approaches provide not only a solid theoretical
framework, but also the support of computationally efficient and highly engineered
tools, like state-of-the-art solvers and model checkers. This is the case of SMT
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solvers and model checkers based on them. Nevertheless, importing SMT-based
model checking in the context of DAP verification is extremely challenging and
cannot be done as is: as it will be discussed in the following sections, it requires
carrying out genuinely novel research for handling the data perspective, and to
develop corresponding algorithmic techniques.

In this thesis, we bridge the gap between DAP verification and infinite-state
model checking, by introducing for the first time a general model-theoretic framework
for automated safety verification of DAPs based on SMT solving. Our approach relies
on array-based systems: we extend their underlying theory so as to incorporate the
needed capabilities to formalize and reason about relational databases. Specifically,
we exhibit how arrays are useful for representing read-write database relations that
can be queried and updated during the evolution of the system, and how the standard
verification machinery usually used in that context can be suitably extended for
verifying safety of DAPs. For this purpose, we develop sophisticated algorithmic
techniques building on top of well-known methods in automated reasoning. We
also demonstrate the feasibility of our approach by showing these techniques in
action thanks to the implementation in the state-of-the-art mcmt model checker,
testing it against a concrete DAP benchmark: in this respect we provide a first,
preliminary experimental evaluation of our verification machinery. Finally, within
our general framework, we introduce a theoretical formalism, inspired by Colored
Petri Nets, that is able to capture expressive modeling capabilities, and also we
propose more practice-oriented models, based on standard languages used in the
BPM literature: for these models, we also provide a proof-of-concept implementation
of an operational framework for modeling and verifying concrete business processes
enriched with data management features.

We devote the rest of this introductory chapter to analyzing in detail the
verification problem we are interested in and to exhaustively presenting the technical
contributions of the thesis.

1.2 Related Literature

The works that are related to the topic of this thesis involve different research areas
within both computer science, business process management and mathematical
logic. We first briefly discuss some formal models for Data-aware Processes that
have been introduced recently. We then introduce the verification problem in such
systems. We finally give a high-level overview of array-based systems and of the
SMT-based methods used for verifying them. This framework provides a powerful,
yet unexplored setting for tackling the verification of Data-aware Processes.
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1.2.1 Formal Models for Data-Aware (Business) Processes
In Section 1.1 we shortly commented on the separation between traditional process
and data modeling.

Traditional data modeling focuses on entities, relationships and static constraints
that are relevant for the domain of interest. The dynamic aspects of the systems are
usually not considered. Instead, traditional process modeling focuses on the control-
flow created by the activities that realize the goals of an organization. This approach
does not take into account how to evaluate conditions over data, how data are
manipulated and how data influence the evolution of the system [Rei12; Dum+18].

This separation is due to the inadequacy of formalizing abstract models able
to interconnect the two components. In fact, this problem is usually solved at the
technological level, where relationships between data and processes are considered
in practice, and tackled at the implementation level: indeed, several well-established
suites (e.g. Bizagi BPM Suite, Bonita BPM, Camunda and YAWL) are able to
express both the process control-flow and relevant data [DM+17]. Nevertheless,
recently a few more systematic but still practice-oriented approaches [Mey+13;
Fah+16; Dad+09], mainly from the modeling perspective, have been proposed to
integrate data and processes, within a system engineering setting, in the scope
of business process applications.

Business Process Management (BPM) [Dum+18] requires handling this signifi-
cant connection at the conceptual level. BPM can be seen as a collection of concepts
and methods used to help humans in modeling, administration, configuration,
execution, analysis, and continuous improvement of business processes. Business
processes can be thought of as a collection of tasks and activities that take one or
more kinds of input and create an output that is of value to the customer: they
are performed in order to achieve some specific business outcome.

From a theoretical point of view, the attempt of finding a coherent and holistic
conceptual view has been carried out by several authors in the last decades. They
have been studying formal models accounting for the interconnection of processes
and data. We informally give a brief description of two of the most significant
models [CDGM13]: Artifact-Centric Systems [DLV16; LDV17] and DCDS [BH+13].

Artifact-Centric Systems

The Artifact-Centric approach to business process modeling was triggered by IBM
Research in the late nineties [NC03], and it is based on the notion of business
artifact. A business artifact (or, simply, an artifact) is a business entity that merges
an information model, which represents the business-relevant data of a business
object (such as an order or a loan request), and a lifecycle model, which involves
dynamic aspects of the artifact progression. The information model contains the
current state of data, possibly stored in some relational storage, and/or in a set
of variables, which may refer either to a primitive value or to some other artifact
instance. It evolves over time according to its lifecycle.
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In various artifact models, lifecycles have a procedural flavor since they are
based on finite state machines whose transitions either create a new artifact, or
modify/eliminate an existing one. These transitions can be fired by actions (also
called services), that are usually described in terms of preconditions (and, sometimes,
postconditions) and nondeterministic effects related to the creation, manipulation
and elimination of artifacts.

More formally, following the representation of artifact systems since their initial
versions (e.g., in [Deu+09]), we can summarize their essential features by considering
three main components: (i) a read-only database, storing background information
that does not change during the system evolution; (ii) an artifact working memory,
storing data and lifecycle information about artifact(s), which does change during the
system evolution; (iii) actions/services that access the read-only database and the
working memory, and determine how the working memory itself has to be updated.

Different variants of this framework have been considered toward decidability
of verification, by carefully tuning the expressive power of the three components.
For instance, for the working memory, radically different models are obtained
depending on whether only a single artifact instance is evolved, or whether instead
the co-evolution of multiple instances of possibly different artifacts is supported. In
particular, early formal models for artifact systems merely considered a fixed set of
so-called artifact variables, altogether instantiated into a single tuple of data. This,
in turn, allows one to capture the evolution of a single artifact instance [Deu+09].
Instead, more sophisticated types of artifact systems have been studied recently
in [DLV16; LDV17; DLV19]. Here, the working memory is not only equipped
with artifact variables, but also with so-called artifact relations, which supports
storing arbitrarily many tuples, each accounting for a different artifact instance
that can be separately evolved on its own.

Actions are usually specified using logical formulae relating the content of the
read-only database as well as the current configuration of the working memory
to (possibly different) next configurations. An applicable action may be executed,
nondeterministically transforming the current configuration of working memory
in one of such next configurations.

As for illustration, we give a brief presentation of the Artifact-Centric model
called HAS∗, presented in [LDV17]. This model is a variant of another system,
HAS, introduced by the same authors in [DLV16]. Differently from HAS, we will
see that a procedure for verifying HAS∗ systems have been implemented (in a tool
called verifas [LDV17]). A HAS∗ system comes with a fixed database schema
(i.e. a finite set of relation symbols), whose concrete instance is not updated along
a run of the system (thus accounting for persistent, read-only data), and some
tasks T with its artifacts (the working memory) and its internal services, which
account for the dynamics of the system. Tasks are organized in a Hierarchy H,
capturing units of work at different granularities.

Artifacts and Internal Services are associated with tasks T :
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(i) Artifacts are divided into artifact variables and artifact relations. These are
dynamic entities which can be modified during a run of the system.

(ii) Internal Services formalize the actions that can be fired internally to the
task T if some (pre- and post-)conditions over the artifact variables of T are
satisfied in the instance of the read-only database. They produce an update
of the artifact variables and of the artifact relations.

Every task T provides also a pair of opening and closing services, which allow the
activation of parent or children tasks of the hierarchy H.

Thanks to the presence of (unbounded) data, this system is infinite-state. In fact,
the initial read-only database instance is not fixed a priory, since only its schema is
relevant: this means that unbounded information can be represented by considering
different instances of the same database schema. Furthermore, during the run of
a system it is possible to introduce (potentially new) data values (for example
strings, numbers etc.) that can be thought of as the effects of nondeterministic
external functions (such as user interactions).

A similar setting, where only artifact variables are considered but with some
applications to XML and tree-automata, is provided in [BST13].

Data-Centric Dynamic Systems

Data-Centric Dynamic Systems (DCDSs) were introduced in [BH+13] and further
studied in [Cal+18; MR16]. They provide a powerful framework for the combination
of data and processes, so as to guarantee sufficient expressiveness and significant
decidability results for verification. Sufficient expressiveness means that this
formalism is able to represent several types of interesting scenarios, e.g., web
applications.

The model of DCDS consists of two main components: a data layer and a process
layer. The data layer supplies the storage of persistent data and captures the static
aspects of system, whereas the process layer provides declarative specifications of
system dynamics. The data layer is defined in a full-fledged relational flavor: it can
be thought of as a relational schemaR (as in database theory) endowed with integrity
constraints (which are, as customary, domain-independent first-order sentences).
The process layer provides a set of actions, whose execution can modify and update
the data layer. It may involve external service calls (not to be confused with services
of artifact systems): they are functions representing the interface to external services
that compute output results in an “unknown” (i.e., nondeterministic) way.

The execution semantics of such a system can be intuitively described as follows.
A DCDS is initialized with I0, which is a database instance of the relational schema
R and satisfies all the constraints. Then, this database instance is evolved by the
process layer via applications of actions, which have as effects the modification
of the database instance. After a transition, the new obtained database has to
be still an instance of R and must satisfy again the constraints. An action can
fire a transition after querying the content of the database instance at the current
state, and the update can introduce new values (taken from an infinite countable
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domain) into the database instance by means of external services. Since these
systems have the possibility of introducing new values taken from an infinite
domain, their execution runs are infinite and can use an unbounded quantity of
information: hence, they are infinite-state.

1.2.2 Verification of Data-Aware Processes
The goal of formal verification is to provide an automated analysis of a formal
model against a property of interest, considering all possible system behaviors. In
the context of DAPs, the analysis of correctness of processes at design time needs
to be carried out by taking into account the data component and by checking all
the executions (infinitely many, in general).

In the formal verification literature, formal models are verified against several
kinds of interesting properties: general, domain-independent properties such as
safety, liveness, and fairness [BK08], reachability of the final state and deadlock
freedom, or sophisticated, domain-specific properties such as the following: “in
every state of the system, it is always possible to eventually reach a state where all
pending orders are delivered”. The distinction between general and domain-specific
properties is sometimes blurred, since, as it happens in traditional model checking,
all these properties can be expressed by temporal/dynamic logics, like:

• Branching-time logics: µ-calculus, CTL— Computation Tree Logic—;
• Linear-time logics: LTL — Linear Temporal Logic.
We briefly review the traditional model checking perspective.

Traditional finite-state Model Checking

Since Pnueli, Clarke, Emerson, Sifakis et al. first introduced the basis of model
checking [Pnu81; CE81; QS82], transition systems have been investigated from
a temporal logic perspective, where properties to be verified are represented by
using logical languages able to express dynamic aspects of models. Since these
models are usually abstractions formalizing only the control-flow of the system, they
can have just a finite number of states. Thus, these systems can be represented
as finite labeled graphs: vertices are states labeled by atomic propositions (i.e.,
atomic properties that hold in that specific state) and arcs are transitions. These
systems can be interpreted as Kripke structures [CGP01], as defined in classical
temporal (modal) logic: therefore, the usage of temporal logic formalisms turns
out to be significantly fruitful in this context.

There are various types of properties that traditionally are verified in transition
systems: two of them that are particularly interesting are safety and liveness.
Intuitively, a system is said to be safe if “nothing bad ever happens”, whereas a
liveness property holds whenever “something desirable will eventually happen”.

In this thesis, we focus our attention just on safety problems: we leave the study
of liveness for future work. We now give an informal presentation of the safety
problem, which will be the main topic of this work.



1. Introduction 11

Given an unwanted condition of the system (which can be expressed using a
formula φ in some unspecified logical formalism), we say that there exists an unsafe
path that leads to φ if there is a finite sequence of states such that each state is
connected to the other by “legal” transitions (i.e., transitions that can be fired)
in the system, the first state of this sequence is one of the initial states of the
system, and the last state makes φ true. This means that there is an unwanted (i.e.,
unsafe) possible configuration of the system which is reachable starting from an
initial configuration. In this sense, the safety problem can be cast as a reachability
question: starting from a set of initial states I, is it possible to reach, exploring
the run of the systems, states that satisfy φ?

We give an informal example of a simple safety property.

Example 1.2.1

Suppose to have a system formed by two concurrent processes that share a
critical section C, and suppose to have the following requirement: one thread
of execution can never enter the critical section at the same time that another
concurrent thread of execution enters it (for instance, this critical section could
be a portion of the memory where only one process at a time can access). Let φ
be the temporal formula that states “sometimes the two processes can access C
at the same time”, which represents an unwanted configuration: if the system
is safe, then this configuration can never be reached.

Abstract DAP Verification in the Literature

Turning to formalisms for Data-Aware Processes, we underlined in the previous
section that Artifacts-Centric Systems and DCDSs are intrinsically infinite-state
due to the presence of data: hence, in this context it is not possible to directly
build a faithful finite-state abstraction (in general), since such an abstraction could
not exhaustively account for all the system behaviors. Thus, traditional model
checking is not applicable. In addition, because of the presence of data, it is crucial
to express properties that take into consideration data and their evolution, hence
it is needed to combine temporal logics (for the system dynamics) and first-order
logic (in order to express conditions over data).

In [DLV16] the authors develop a complex machinery based on symbolic
representation of infinite runs of tasks in HAS in order to verify restricted forms
of first-order temporal properties, like:
“If an order is taken and the ordered item is out of stock, then the item must
be restocked before it is shipped”.

In order to specify such temporal properties, they use an extension of LTL, called
H-LTL-FO, in which atoms are quantifier-free first-order formulae. The presence of
data is witnessed by first-order variables in quantifier-free formulae (that substitute
propositional formulae). Using the technical notion of isomorphism types, they
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reduce their verification problem to repeated state reachability in VASS (Vector
Addition Systems with States), which is a well-known mathematical modeling
language for the description of distributed systems [KM69; HP79]. Exploiting this
reduction, they show the decidability of verifying whether, given a HAS model
M and a H-LTL-FO formula φ, M satisfies φ. In [LDV17] the same authors
provide an implementation of the machinery studied in [DLV16] in a tool called
verifas. In order to do so, they slightly modify the HAS model, introducing
the variant called HAS∗ presented above. In that paper, they introduce some
technical heuristics (Karp-Miller algorithm, pruning coverability etc.) for improving
the performance of their model checker.

Similar results are presented in [BST13]. In this setting the authors show, using
model-theoretic notions like amalgamation and Fraissè classes, the decidability
of the (non-)emptiness problem, which can be equivalently reformulated as a
reachability (i.e., safety) problem.

We underline that both the approaches from [DLV16] and from [BST13] propose
quite abstract mathematical models that, despite being very expressive and suitable
for verification, are far from adopting standard languages that can be used in
practice and in industrial applications.

A very different approach to DAP verification is given in [BH+13], where the
DCDS model is considered. Since for the activation of actions the data layer is
queried through domain-independent FO-formulae, and since the systems evolve
along time, the combination of temporal and first-order logic components is necessary.
The authors show the undecidability of verification in the general case: in order
to guarantee decidability, they also study expressiveness restrictions to the models
(e.g., state-boundedness) and to the specification logics. The machinery employed
involves variants of bisimulations preserving the validity of µ-calculus formulae.

We remark that DCDSs are abstract models for which powerful verification
techniques are available but for which practice-oriented modeling languages are
not employed, neither for the process nor the data layer.

There is a substantial difference between HAS∗ and DCDS concerning the
studied verification problem:

1. in the first case, the verification is “parametric on” (or, “parameterized by”)
a class of read-only databases, which means that the property of interest
is verified for an infinite class of read-only databases that are not modified
during a run of the system;

2. in the second case, an initial database instance is fixed from the beginning, and
this instance is modified during a run of the system thanks to the (unbounded)
effects of external services.
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Practice-oriented models of DAPs

So far, we mainly focused our attention on the most expressive theoretical frameworks
(such as DCDS and HAS) for modeling and verifying data-aware processes. These
frameworks are defined using an abstract, mathematical syntax, even for approaches
like that in [LDV17], which adopts a language inspired by artifact-centric models
and supports concrete tools for verification. We now discuss more practice-oriented
models for DAPs that have been introduced in the literature.

It is important to mention here that there is a wide range of other approaches
falling into the artifact-/data-/object-centric spectrum. As for illustration, we
provide a non-exhaustive list of examples of such approaches: the Guard-Stage-
Milestone (GSM) language [DHV11], the object-aware business process management
framework of PHILharmonic Flows [KWR11], the declarative data-centric process
language RESEDA based on term rewriting systems [Sec+18]. In a nutshell,
these approaches combine the data and process components, but largely focus on
modeling, with few exceptions offering runtime verification of specific properties
(e.g., RESEDA allows for a specific form of liveness checking). For this reason,
we will not consider these approaches anymore.

There exists a huge literature devoted to investigating DAPs formalisms based
on standard/end user-oriented languages. Specifically, there are important related
works that investigate the integration of data and processes with a system engineering
setting [Mey+13; Fah+16; Dad+09] that are tailored to modeling and enactment.

In [Mey+13] the authors study the problem of modeling processes with
complex data dependencies, such as many-to-many relationships, and provide
an implementation for their automatic enactment from process models. Specifically,
this work has the merit of exploiting standard languages for modeling processes and
data. Indeed, it introduces an extensions of BPMN data objects that use annotations
supporting sophisticated features such as management of data dependencies and
differentiation of data instances. In addition, SQL-queries are derived from
process models thanks to a pattern-based approach. Of particular relevance is
ADEPT [Dad+09], which permits to combine fragments of an ad-hoc process
modeling language with SQL statements that interact with an underlying relational
storage, with the goal of providing execution and analytic services. However,
all these approaches do not focus on verification and do not provide automatic
techniques for assessing safety of data-aware processes.

Other works that are worth mentioning are [Cor+18; Hou+19]. In the first
one, the authors address the problem of modeling BPMN collaborations taking
into account different perspectives, such as the interaction with data and the co-
evolution of multiple instances. They do not only study the formal semantics of
these models, but also implement an animator tool for the representation and
visualization of their execution semantics. In the second one, a first attempt toward
verification of BPMN collaboration models is presented, although in this case the
data perspective is abstracted away.
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Since the focus of this thesis is on verification of business processes enriched
with data, we now circumscribe the discussion of the relevant related works to those
dealing with the formal verification of complex processes enriched with data. This
point is particularly significant in view of the general goal of the thesis, because
the choice of language constructs is affected by the verification task one needs
to solve - indeed, verifying sophisticated models supporting expressive constructs
requires suitably controling the data and control-flow components as well as their
interaction [CDGM13; Deu+18].

The vast majority of the contributions in the line of research on verification
provides foundational results, but does not come with corresponding operational
tools for verification. Hence, we conclude the subsection by briefly presenting only
those approaches for the integration of data and processes that come with verification
tool support. We already briefly presented VERIFAS, so we will focus now on
other tools relying on practice-oriented models.

In [EST18], the authors present an approach for automatically verifying and
validating the correctness of artifact-centric business processes that are defined
by means of BAUML models. One of the great advantages of BAUML models
lies in the fact they are based on practice-oriented languages, since they rely on a
combination of UML/OCL-based models to specify the various process components:
UML (Unified Modeling Language) and OCL (Object Constraint Language) are
approved ISO standard language, the first one is used to model and visualize the
design of a system, whereas the second one is used to describe in a declarative
way rules. The approach of [EST18] translates the verification task into first-order
satisfiability tests over the flow of time, via the definition of a fixed set of test cases
expressing properties that are checked as derived predicates.

In [Pol+19], the authors present a framework for modeling and verifying
information systems combining information models and process models. To do so,
they propose the Information Systems Modeling Language (ISML). ISML models
can express static, information aspects by exploiting first-order logic with finite sets
and equality, and dynamic aspects by exploiting Petri Nets with Identifiers (PNIDs
[Hee+09]). The verification machinery relies on state-space construction techniques
for Colored Petri Nets, assuming that the data domains are all bounded; no specific
verification language is employed, leaving to the user the decision on how to explore
the state space. Although ISML, from the process-centric of view, adopts a Petri Net-
based perspective that is in line with the modeling conventions used in the literature,
it employs data definition and manipulation languages specified in an ad-hoc way.

In [Cal+19f], the dapSL approach is proposed: it is a declarative language, built
on top of the SQL standard, that supports modeling, enactment and verification
of data-aware processes. dapSL defines the control-flow implicitly via condition-
action rules, and uses a language grounded in the SQL standard for querying
and updating the data. Its verification engine relies on an ad-hoc state-space
construction that, under suitable restrictions, faithfully represents in a finite-state
way the infinite state space induced by the data-aware process under analysis;
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however, no additional techniques are defined to explore the state space or verify
temporal properties of interest.

Since, in general, verifying data-aware processes is highly undecidable [CDGM13;
Deu+18], it is crucial to investigate the key meta-properties (such as soundness,
completeness, and termination) of the employed algorithmic techniques. In this
respect, all the practice-oriented approaches presented in this paragraph lack a
precise and detailed meta-analysis, as it will be carefully discussed in Chapter 11.

There is a final consideration that is worth highlighting, which regards the type
of verification problem addressed by the aforementioned approaches. Indeed, the
problem and the employed verification techniques are strongly affected by whether
persistent data are managed under a unique access policy, or instead there is a fine-
grained distinction based on how the process can access them [CDGM13; Deu+18].
On the one hand, the approaches presented in this paragraph (i.e., BAUML, dapSL,
and ISML) do not distinguish read-only from updatable persistent data. They
require to fully fix the initial configuration of data: hence, they perform verification
tasks by considering all possible evolutions of the process starting from the fixed
initial configuration. Differently, approaches like VERIFAS distinguish read-write
from read-only data, in turn focusing on forms of parameterized verification where
the properties of interest are studied for every possible configuration of the read-only
data, assessing whether the process correctly works regardless of which specific read-
only data are retrieved. In this thesis, we will study the latter: in the settings we
are interested in, the language separates read-only persistent data from persistent
data that are updated during the execution.

A more detailed discussion on the related works that propose practice-oriented
frameworks for modeling and verifying data-aware processes is carried out in
Chapter 11, where the existing approaches are carefully compared with the one
proposed in this thesis.

1.2.3 Model Checking for Infinite-State Systems using
SMT-based Techniques

SMT-based infinite-state model checking has a long tradition, as witnessed by
several papers like [Ghi+07; GR10a; Ber+17]. Other approaches on symbolic model
checking that are worth mentioning, but that we are not going to use in this thesis,
are [McM93; HRJ04; McM04; McM03].

Since an exhaustive exploration in the space of configurations is not possible
when the states are infinitely many, a symbolic representation is needed. Instead of
describing all the states of the system explicitly, states are represented symbolically
using individual and/or function variables, called “state variables”: these variables
can change their value during the evolution of the system, and their content in every
moment is supposed to determine the current state of the system. The current
values of all the state variables of the system identify a configuration. States are not
always considered separately: in fact, in transition systems described symbolically,
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there could be a set of (possibly infinitely many) states that induce the same
behavior. Hence, (possibly infinite) sets of states can be characterized via logical
formulae involving the state variables: all the states satisfying the same formulae
need to be thought, to some extent, as indistinguishable.

Besides sets of states, also the transitions of the system can be formalized
by using logical formulae: given a symbolic configuration represented by a state
variable a (identifying the current state of the system), a transition t between two
configurations is represented by means of a formula τ(a, a′), where the variable a′
is a renamed copy of a that represents the next state of the variable a, obtained
after applying t. Symbolic formalisms are powerful enough to formulate the safety
verification problem: intuitively, establishing if there exists a model, taken from
a specific class of models, and a path inside it leading to the satisfaction of the
property of interest, is in some sense reduced to deciding through logical mechanisms
and reasoning tasks (e.g., satisfiability and logical implication) the existence of
some relations among symbolic representations of states and transitions.

We restrict our attention to symbolic formalisms that use SMT solving as
its underlying logical reasoning task, and in particular on array-based systems
[Ghi+08; GR10a]. We first provide some intuitions on the SMT problem and
SMT-based model checking in general.

SMT problem and SMT-based model checking

The Satisfiability Modulo Theories (SMT) problem is a decision problem that
extends propositional satisfiability to satisfiability of first-order formulae with
respect to combinations of background theories such as arithmetic, bit-vectors,
arrays, uninterpreted functions. There exists a family of tools for attacking this
problem, called SMT solvers: a non-comprehensive list of SMT solvers contains
Yices [Yic; Dut14], Z3 [Mic; dB08], CVC5 [Cvc; Bar+ a], MathSAT5 [Mat; Cim+13].
They extend SAT solvers with specific decision procedures customized for significant
(and useful in practice) first-order theories.

The SMT-LIB project1 [BFT18] (started in 2003) aims at bringing together
people interested in developing powerful tools combining sophisticated techniques
in SAT solving with dedicated decision procedures involving specific theories used
in applications (especially in software verification). All in all, SMT solving relies
on a universal, flexible and largely expressive approach that allows us to exploit a
full-fledged declarative framework where SMT solvers are highly competitive.

SMT tools are at the heart of declarative approaches to model checking, both
in the bounded and in the unbounded case: they are employed in many advanced
techniques, for instance in interpolation-based [McM06]. Specifically, SMT solving
can be employed to attack the verification of infinite-state systems expressed by
means of symbolic models. Several different methods have been successfully studied

1http://smtlib.cs.uiowa.edu/

http://smtlib.cs.uiowa.edu/
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in this respect: for the purpose of this thesis, the backward reachability procedure
plays a crucial role, which we will discuss better in the following paragraph.

Other important methods that have been investigated for the verification of
infinite-state systems are based on forward reachability, which means that the
state space is explored, starting from the initial configurations, via an iterative
computation of direct images of state, i.e. the set of states reachable through
transitions of the system under analysis. Some well-known methods of this type
are K-induction [SSS00] and IC3 [Bra11a]. There exist various SMT-based model
checkers that implement these methods: as for illustration (and by no means with
the intention of providing a complete list), we briefly report three of them.

nuXmv [Cav+14] is a symbolic model checker for the formal verification of
synchronous infinite-state systems that extends the nuSMV model checker [Cim+02].
It employs SMT-based techniques that are implemented building on top of the
MathSAT5 SMT solver [Cim+13]. nuXmv implements the interpolation-based
method by McMillan [McM03], which is integrated with other techniques based
on K-induction and on IC3.

Kind 2 [Cha+16] is a multi-engine infinite-state model checker for assessing
safety properties of synchronous reactive systems, based on SMT solving. Its input
language relies on an extension of Lustre, a declarative language for programming
synchronous systems introduced in [Cas+87]. Kind 2 employs various SMT-based
techniques that are executed concurrently and in strict cooperation: specifically,
it combines induction-based engines such as K-induction, IC3 and additional
invariant generation methods.

Finally, JKind [Gac+18] is an SMT-based inductive model checker for safety
checking of infinite-state systems. Analogously to Kind 2, in JKind models and
properties are specified by using the Lustre language too. JKind exploits multiple
parallel engines and is used as the back-end for several industrial applications. By
building on top of several SMT solvers, it proves or falsifies safety properties by
employing K-induction and IC3 methods.

We will not enter into a deeper analysis of these approaches since in this work,
in order to formally verify DAPs, we will only focus on backward reachability
techniques and on the mcmt model checker implementing them.

Array-based Systems: an Informal Overview

In [Ghi+08], Ghilardi et al. introduced for the first time a declarative method, based
on SMT solving, for the verification of infinite-state systems formalized using arrays.
Arrays were originally introduced to provide a declarative framework for verifying
distributed systems. Distributed systems are parameterized in their essence: the
number N of interacting processes within a distributed system is unbounded, and
the challenge is that of supplying certifications that are valid for all possible values
of the parameter N . The overall state of the system is typically described by
means of arrays indexed by process identifiers, and used to store the content of
process variables like locations and clocks.
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In array-based systems, transitions manipulate arrays via logical formulae. This
formalism provides two theories, needed to capture the main idea behind arrays:
the theory of indexes, which describe the topology of the system (e.g., the network
of distributed or concurrent processes), and the theory of the elements that are
stored in the components of the arrays (i.e., data element). The theory of arrays
is given by the theory of total functions that map indexes to elements. Formally,
arrays are genuine second-order variables and are interpreted as these total functions.
Arrays can change their content and evolve over time. States and transitions are
represented by using logical formulae. For instance, given a tuple of arrays a,
we represent the transitions as a formula τ(a, a′), where a′ is equal to a up to a
renaming of the variables of a. A state of the system is given by the evaluation
(or interpretation) of all the array variables a.

Also initial and unsafe states are represented using formulae, called initial and
unsafe formulae respectively. In this context, the (un)safety problem becomes
the problem of detecting a path in an array-based model such that the initial
evaluation of the arrays satisfies the initial formulae and, after a finite sequence
of states that satisfy the transition formula, we reach an evaluation of the arrays
that satisfies the unsafe formula.

Ghilardi et al. have developed an SMT-based version of the backward reachability
procedure [Ghi+08; GR10a], and implemented it into a model checker, called Model
Checker Modulo Theories (mcmt) [GR10b]. Another model checker employing
backward reachability for array-based systems is called Cubicle [Con+12].

There is a historical reason for choosing backward reachability: it was known
since the seminal paper of Abdulla et al. [Abd+96] that backward search decides
safety problems for a large class of systems, called well-structured transition systems.
What backward search in array-based systems is meant to achieve is precisely
to reproduce the results of [Abd+96] in a declarative, SMT-based setting: in
such a declarative setting, the abstract well quasi order (wqo) underlying well-
structured transitions systems is replaced by the standard model-theoretic notion
of an embedding between finitely generated models (in many practical cases, in fact,
such embeddability relation can be proved to be a wqo, using a suitable version
of Dickson or of Higman lemma, as shown in Chapter 5 below).

We give an informal presentation on how the backward reachability procedure
works. Starting from the symbolic representation of unsafe states provided by
a formula K, the procedure computes step by step the preimages Pre(τ,K),
Pre(τ, Pre(τ,K)), ... through the transitions τ . These preimages are logical
formulae of the form Pre(τ, B) (for some formula B) that intuitively represent
the (possibly infinite) set of states that can reach B in one step by applying τ .
The iterated computation of these preimages is done at a purely symbolic level
via satisfiability tests supplied by the backend SMT solver: mcmt uses Yices
and Z3 as backend SMT solvers.

If the unsafe condition is reachable from the initial states after a finite number
of preimage computations, the system is proved to be unsafe; otherwise, if the
procedure terminates reaching a fixed point, the system is proved to be safe. In
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general, since these systems are intrinsically infinite-state, the procedure may not
terminate in case the system is safe, whereas it always terminates when it is unsafe.

In the next sections, we present the main contributions provided by this thesis.

1.3 Contributions of the Thesis
In this section, we describe in detail the main contributions presented in the thesis.
We first discuss the content of the first part of the thesis, which is about a general
framework for DAP safety verification that we introduce for the first time. We
then comment on the sophisticated automated reasoning techniques requested for
efficiently performing verification in such a framework, also showing the promising
results obtained with a preliminary experimental evaluation. Finally, we present two
relevant applications of our general framework in the context of business processes.

1.3.1 Contributions of the First Part

The main contribution of the first part of the thesis comes from a rather surprising
confluence of two well-established research traditions: model-theoretic algebra
from mathematical logic and Satisfiability Modulo Theories (SMT). We show that
such seemingly very different scientific paradigms can indeed cooperate in formal
verification and we shall supply evidence for this claim by developing an innovative
application to DAP verification. We briefly explain how the above-mentioned
ingredients fit together.

Model-Theoretic Algebra

Finding solutions to equations is a challenge at the heart of both mathematics and
computer science. Model-theoretic algebra, originating with the ground-breaking
work of Robinson [Rob51; Rob63], cast the problem of solving equations in a logical
form, and used this setting to solve algebraic problems via model theory. The
central notion is that of an existentially closed model, which we explain now. Call
a quantifier-free formula with parameters in a model M solvable if there is an
extension M ′ of M where the formula is satisfied. A model M is existentially closed
if any solvable quantifier-free formula already has a solution in M itself. This
notion is not first-order definable in general. However, in fortunate and important
cases, the class of existentially closed models of T are exactly the models of another
first-order theory T ∗. In this case, the theory T ∗ can be characterized abstractly as
the model companion of T . Model companions become model completions in the case
of universal theories with the amalgamation property (all these notions are defined
in Chapter 2); in such model completions, quantifier elimination holds, unlike in the
original theory T . The model companion/model completion of a theory identifies
the class of those models where all satisfiable existential statements can be satisfied.



20 1.3. Contributions of the Thesis

In declarative approaches to (infinite-state) model-checking, the runs of a system
are identified with certain definable paths in the models of a suitable theory T : we
will show in Chapter 4 that, without loss of generality, one may restrict to paths
within existentially closed models, thus taking profit from the properties enjoyed
by the model completion T ∗ (quantifier elimination being the key property to
be carefully exploited).

Interestingly, model completeness has other well-known applications in computer
science. It has been applied: (i) to reveal interesting connections between temporal
logic and monadic second-order logic [GG16; GG17b]; (ii) in automated reasoning
to design complete algorithms for constraint satisfiability in combined theories over
non-disjoint signatures [Ghi04; BGT06; GNZ08; NRR10; NRR09]; (iii) again in
automated reasoning in relationship with interpolation and symbol elimination [SS16;
Sof18]; (iv) in modal logic and in software verification theories [GG17a; GG18],
to obtain combined interpolation results.

SMT solving: the Problem of Quantifiers

Specifically, our approach to DAP verification is grounded in array-based systems.
First of all, notice that the term “array-based systems” is an umbrella term
generically referring to transition systems specified with logical formulae using
arrays. The precise formal notion depends on the application and is defined on
the spot. In fact, in this thesis we will introduce a specific instance of array-based
systems for verifying generic DAP models whose transitions are expressed by means
of logical formulae containing existential quantifiers ranging over specific ‘data
domains’: this attempt requires genuinely novel research because we need to solve
sophisticated problems originated by the presence of these quantifiers.

As already mentioned in the previous section, the safety problem is handled
via backward reachability: this procedure needs to iteratively regress bad states by
computing their predecessors, the predecessors of the predecessors, etc., until a
fixpoint is reached or the initial state(s) are intersected. This is done symbolically by
manipulating quantifier-free logical formulae that describe sets of states. In general,
first-order quantifiers (usually, existential quantifiers) are introduced to represent
the sets of reachable states computed through preimages: sometimes, such quantifiers
are introduced by transitions, e.g., in case their guards are existential queries over a
relational database. Depending on the specific features of the array-based system, to
guarantee the regressability of such formulae the procedure may require eliminating
existentially quantified variables present in the formula: indeed, preimages are
intended to describe sets of states, and as such, they should be quantifier-free.

Backward search, once done in a declarative symbolic setting, requires discharging
proof obligations that can be reduced to satisfiability tests for quantified formulae,
albeit of a restricted syntactic shape. This raises the question of how to handle
such (first-order) quantifiers. In the original papers [Ghi+08; GR10a] first-order
quantifiers were handled in satisfiability tests by instantiation, whereas in successive
applications [CGR10; Alb+14] quantifier elimination was also used to handle
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quantifiers ranging over specific data structures (typically, real-valued clocks).
In that context, the existential quantifiers to eliminate involved only arithmetic
variables, and the corresponding quantifier elimination procedures were consequently
the standard ones studied for arithmetic theories (such as Fourier-Motzkin and
Presburger): indeed, the theories axiomatizing such data structures were limited to
light versions of arithmetic (mostly even included in what is called ‘difference logic’
in the SMT terminology), and at least in the examples arising from benchmarks
quantifier elimination was not as harmful as in the general arithmetic case. However,
quantifier elimination is not available for generic first-order theories. Suitable
combinations of quantifier instantiations and quantifier eliminations are needed
at the foundational level to design complete algorithms for the satisfiability tests
that a model checker for array-based systems has to discharge during the search: a
specific form of such combination will be developed in this thesis too. By means
of such combinations, satisfiability tests involving quantified formulae of special
shape are reduced to satisfiability tests at quantifier-free level, to be very efficiently
discharged to existing SMT solvers (as confirmed in Chapter 9).

Bringing all the Ingredients Together

To capture DAPs, we follow the traditional line of research focused on the formal
representation of artifact systems [Hul08; Via09; Deu+09; DDV12; CDGM13;
Deu+18]. As remarked in Section 1.2, different variants of this framework have
been studied in the literature, by carefully tuning the expressive power of the
three components. In this work, we are mostly interested in two types of artifact
systems: those where the working memory consists of only a fixed set of artifact
variables, and those where the working memory also contains artifact relations. The
latter naturally fit the paradigm of array-based systems: the read-only database is
axiomatized by a suitable universal first-order theory T and the artifact variables
and relations are modeled by second-order variables (i.e., array variables): we will
explain in detail in Chapter 3 how artifact relations can be formalized using array
variables. Here, we just mention that tuple identifiers (i.e., the “entries”) of the
artifact relations play the same role played by process identifiers in distributed
systems: formally, in both cases, they are just sorted first-order variables whose
sort is the domain sort (i.e., an index sort) of an array variable.

The resulting framework, however, requires novel and non-trivial extensions of
the array-based technology to make it operational. In fact, as we saw, quantifiers are
handled in array-based systems both by quantifier instantiation and by quantifier
elimination. Quantifier instantiation can be transposed to the new framework,
whereas quantifier elimination becomes problematic. Since we focus on DAP
models, quantifier elimination should be applied to data variables, which do not
simply range over data types (like integers, reals, or enumerated sets) as in standard
array-based systems, but instead point to the content of a whole, full-fledged (read-
only) relational database and it could be the case that the theory T axiomatizing
it does not enjoy quantifier elimination. In general, as we will see below, theories
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formalizing relational databases do not admit quantifier elimination. Here, model-
theoretic algebra comes into the picture: we show that, without loss of generality,
we can assume that system runs take place in existentially closed structures, so that
we can exploit quantifier elimination, provided T has a model completion.

The question of whether T admits or not a model completion is related to the
way we represent the read-only database. Model completions exist in case the
read-only database is represented in the most simple way, as consisting of free n-ary
relations, not subject to any kind of constraint. However, applications require the
introduction of some minimal integrity constraints, like primary and foreign keys.
Naive declarative modeling of such requirements (for instance via relations that are
partially functional) would destroy amalgamation property, thus compromising the
existence of model completions. Instead, we propose a “functional view” of relations,
where the read-only database and the artifact relations forming the working memory
are represented with sorted unary function symbols.

Overview of the Contributions of the First Part

By exploiting the above-explained machinery and its model-theoretic properties,
we then provide a fourfold contribution.

Our first contribution is provided in Chapter 3, and consists in defining a general
framework for Array-Based Artifact Systems, in which artifacts are formalized in
the spirit of array-based systems. In this setting, we define the Simple Artifact
System (SAS) model and the (Universal) Relational Artifact System (RAS) model.
SASs are a particular class of (Universal) RASs, where only artifact variables are
allowed; RASs are specific Universal RASs whose working memory also contains
artifact relations; Universal RASs are the most expressive model, where guards of
transitions can contain some form of universal quantification over the content of
artifact relations. Universal RASs employ arrays to capture a very rich working
memory that simultaneously accounts for artifact variables storing single data
elements, and full-fledged artifact relations storing unboundedly many tuples. Each
artifact relation is captured using a collection of arrays, so that a tuple in the
relation can be retrieved by inspecting the content of the arrays with a given index.
The elements stored therein may be fresh values injected into the Universal RAS,
or data elements extracted from the read-only DB, whose relations are subject
to key and foreign key constraints.

To attack this modeling complexity within array-based systems, Universal RASs
encode the read-only database (the DB schema) using a functional, algebraic
view, where relations and constraints are captured using multiple sorts and unary
functions. To the best of our knowledge, this encoding has never been explored in
the past, but is essential in our context. In fact, more direct attempts to encode
the read-only DB into standard array-based systems would fail.

Our resulting RAS model captures the essential features of [LDV17], which
in turn is tightly related (though incomparable) to one of the most sophisticated
formal models for Artifact-Centric Systems [DLV16; DLV19] (cf. Subsection 1.2.1
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for details on these models). We discuss the relationships between RASs and the
frameworks of [LDV17; DLV16; DLV19] in Section 5.4.

Our second contribution is about safety verification of Universal RASs, which
is done irrespective of the content of the read-only database. In this sense, our
verification problem is parametric on the specific database instances, so as to ensure
that the process works as desired irrespectively of the specific read-only data stored
therein. We develop a new version of the backward reachability algorithm employed
in traditional array-based systems [Ghi+08; GR10a], making it able to verify
unsafety of RASs (and consequently SASs) in a sound and complete way (we will
see later that for Universal RASs we can only guarantee a waker result). As already
briefly mentioned, the main technical difficulty, which makes the original algorithm
not applicable anymore, is that transition formulae in Universal RASs, in RASs
and in SASs contain special existentially quantified “data” variables pointing to the
read-only DB, which contains data elements possibly constrained by primary keys
and foreign keys. Such data variables are central in our approach as they are needed:

• from the modeling point of view, to equip array-based systems with the ability
to query the read-only DB;

• again for modeling reasons, to express nondeterministic inputs from the
external environment, such as users (a feature that is customary in business
processes);

• to encode typical forms of updates employed in the artifact-centric literature
[DLV16; LDV17].

The presence of these quantified data variables constitutes a big leap from traditional
array-based systems: due to the peculiar nature of data variables pointing to the
read-only DB, the standard techniques studied for arithmetic do not carry over.
Hence, genuinely novel research is needed in order to eliminate new existentially
quantified data variables that are introduced during the computation of predecessors
in the backward reachability procedure, so as to guarantee its regressability.

From a theoretical point of view, we solve this problem by introducing a dedicated
machinery based on model completions. While in the case of arithmetic variables the
corresponding theories admit themselves quantifier elimination, this is not the case
anymore for our data variables. However, we show that quantifier elimination for
data variables that is available in the model completion of their theory can actually
be safely employed in the context of backward reachability, retaining soundness and
completeness when checking safety of RASs. This requires modifying significantly
the original procedure and the original proofs.

We get a similar (but weaker) result for Universal RASs: because of the
difficulties created by universal quantifiers in guards, in order to apply again
backward reachability, we need to transform them before into plain RASs. This
transformation is possible but requires to approximate the behavior of the original
system: if the transformed system is proved to be safe, then the original system
is safe as well; however, spurious unsafe traces can be introduced during the
approximation, so an unsafe outcome returned by backward reachability may be
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wrong. This implies that for Universal RASs we can only partially retain the
meta-properties we are able to prove for RASs.

In the general case, backward reachability is not guaranteed to terminate when
checking safety of SASs and RASs. As a third contribution, we consequently isolate
three notable classes of RASs for which backward reachability is guaranteed to
terminate, in turn witnessing decidability of safety. The first class restricts the
working memory to variables only, i.e., focuses on SAS. The second class focuses on
RASs operating under the restrictions imposed in [LDV17]: it requires acyclicity of
foreign keys and requires a sort of locality principle in the action guards, ensuring
that different artifact tuples are not compared. Consequently, it reconstructs in our
setting the essence of the decidability result exploited in [LDV17] if one restricts
the verification logic used there to safety properties only. In addition, our second
class supports full-fledged bulk updates, which greatly increase the expressive power
of dynamic systems [SS13] and, in our setting, witness the incomparability of our
results and those in [LDV17]. The third class is genuinely novel, and while it
further restricts foreign keys to form a tree-shaped structure, it does not impose
any restriction on the shape of updates, consequently supporting not only bulk
updates, but also comparisons between artifact tuples. To prove termination of
backward reachability for the second and the third classes, we resort to techniques
based on well-quasi orders (the relation shown to be a wqo is the embeddability
relation between database instances): for the third class in particular, we make
use of a non-trivial application of Kruskal’s Tree Theorem [Kru60].

1.3.2 Contributions of the Second Part

The problem of eliminating quantifiers in model completions during backward
search is strictly related to another well-studied problem in the automated reasoning
literature: the one of computing uniform interpolants, or, equivalently, covers. We
first give an overview of uniform interpolants.

Uniform Interpolant: an Overview

We summarize the two main (quite independent) research lines that investigated
uniform interpolants in the last three decades.

We briefly recall what uniform interpolants are. We fix a logic or a theory
T and a suitable fragment L (propositional, first-order quantifier-free, etc.) of
its language. Given an L-formula φ(x, y) (where x, y are the variables occurring
free in φ), a uniform interpolant of φ (w.r.t. y) is an L-formula φ′(x) where only
variables x occur free, and that satisfies the following two properties: (i) φ(x, y) `T
φ′(x); (ii) for any further L-formula ψ(x, z) such that φ(x, y) `T ψ(x, z), we have
φ′(x) `T ψ(x, z). In other words, whenever uniform interpolants exist, one can
compute an interpolant for an entailment like φ(x, y) `T ψ(x, z) in such a way
that this interpolant is independent of ψ.
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Uniform interpolants were originally studied in the context of non-classical logics,
starting from the pioneering work by Pitts [Pit92]. Uniform interpolants have in
such non-classical logics context a ‘local’ and a ’global’ version, depending on how
the entailment `T is interpreted: in the local version it is interpreted as ‘provability
of implication’, whereas in the global version is interpreted as ‘provability under
assumption’ (the two versions coincide for intuitionistic logic, but not for modal
logics). Uniform interpolants can be semantically connected to some appropriate
notion of bisimulation at the level of Kripke models [DH00].

The existence of uniform interpolants is an exceptional phenomenon, which is
however not so infrequent; it has been extensively studied in non-classical logics
starting from the nineties, as witnessed by a large literature, including for instance
[Sha93; Vis96; GZ02; GZ95b; GZ95a; Ghi95; Bíl07; GMT17; KM19; MR21]).
The main results from the above papers are that uniform interpolants exist for
intuitionistic logic and for some modal systems (like the Gödel-Löb system and
the S4.Grz system); they do not exist for instance in modal systems S4 and K4,
whereas for the basic modal system K they exist for the local consequence relation
but not for the global consequence relation (the opposite situation is also well-
possible, already in the locally finite case, as a consequence of Maksimova’s results
on amalgamation and super-amalgamation [Mak79; Mak80]).

In the last decade, the automated reasoning community developed an increasing
interest in uniform interpolants as well, with a particular focus on quantifier-free
fragments of first-order theories. This is witnessed by various talks and drafts by
Kapur presented in many conferences and workshops (FloC 2010, ISCAS 2013-14,
SCS 2017 [Kap17]), as well as by the paper presented in ESOP 2008 authored
by Gulwani and Musuvathi [GM08]. In this last paper uniform interpolants
were renamed as covers, a terminology we shall adopt in this work too. In
these contributions, examples of cover computations were supplied and also some
algorithms were sketched (but no formal proof of correctness was provided).

As discussed several times, declarative approaches to infinite-state model
checking like [RV03] and [GR10a] need to manipulate logical formulae in
order to represent sets of reachable states. To prevent divergence, various
abstraction strategies have been adopted, ranging from interpolation-based [McM06]
to sophisticated search via counterexample elimination [HB12]. Precise computations
of the set of reachable states require some form of quantifier elimination and hence
are subject to two problems, namely that quantifier elimination might not be
available at all and that, when available, it is computationally very expensive.
To cope with the first problem, Gulwani and Musuvathi [GM08] introduced the
notion of cover and showed that covers can be used as an alternative to quantifier
elimination and yield a precise computation of reachable states. Concerning the
second problem, again in [GM08] it was observed (as a side remark) that computing
the cover of a conjunction of literals becomes tractable when only free unary
function symbols occur in the signature: we will show in Section 7.4 that the same
observation applies when also free relational symbols occur.
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The usefulness of covers in model checking was firstly stressed in [GM08]. In
addition, covers (via quantifier elimination in model completions and hierarchical
reasoning) play an important role in symbol elimination problems in theory
extensions, as witnessed in the comprehensive paper [Sof18] and in related
papers [PS19] studying invariant synthesis in model checking applications.

Overview of the Contributions of the Second Part

1) Cover Computation. Chapter 7 is devoted to studying efficient techniques
for computing covers.

The use of cover is motived by our techniques for the verification of DAPs. In
such a context, we apply model completeness techniques for verifying transition
systems based on read-only databases, in a framework where such systems employ
both individual and higher-order variables.

We first show that covers are strictly related to model completions, thus creating
a bridge that links different research areas. In particular, we prove that computing
covers for a theory is equivalent to eliminating quantifiers in its model completion.
This connection reproduces, in a first-order setting, an analogous well-known
connection for propositional logics: the connection between propositional uniform
interpolants and model completions of equational theories axiomatizing the varieties
corresponding to propositional logics, which was first stated in [GZ97] and further
developed in [GZ02; GMT17; KM19; MR21].

We provide the first formal proof about the existence of covers in EUF : such
a proof is equipped with powerful semantic tools (see the Cover-by-Extensions
Lemma 7.1.1 below) obtained thanks to interesting connections with model
completeness [Rob51], and comes with an algorithm for computing covers that
is based on a constrained variant of the Superposition Calculus [NR01], equipped
with appropriate settings and reduction strategies. The related completeness
proof requires a careful analysis of the constrained literals generated during the
saturation process. Complexity bounds for the fragment used for representing DB
schemas in DAP verification, i.e., where only free unary function and n-are relation
symbols occur in the signature, are also investigated: we show that computing
covers for such fragment is a computationally tractable problem, i.e. it has a
quadratic upper bound in time.

An extension of our constrained Superposition Calculus that handles a schema
of additional constraints (useful for our applications) is provided in Section 7.5.
Notably, computing covers in this extended case is also operationally mirrored in
the mcmt model checker starting from version 2.8: we give some details about
this implementation.
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2) Cover Combination. Chapter 8 is dedicated to studying the problem of
computing covers (or, uniform interpolants) in theory combinations. Theory
combination is a classical problem in the automated reasoning and SMT literature:
it consists of transferring properties and methods to the union (i.e., the combination)
of theories, making use of the methods and properties of the component theories. In
this case, the property of interest is admitting covers and the method investigated
is how to compute covers.

Indeed, the cover transfer problem for combined theories is an important question
that is also suggested by the applications to DAP verification: for instance, when
modeling and verifying DAPs, it is natural to consider the combination of different
theories, such as the theories accounting for the read-write and read-only data
storage of the process as well as those for the elements stored therein. Formally,
the cover transfer problem can be stated as follows: by supposing that covers exist
in theories T1, T2, under which conditions do they exist also in the combined theory
T1 ∪ T2? We show that the answer is affirmative in the disjoint signatures convex
case, using the same hypothesis (that is, the equality interpolating condition) under
which quantifier-free interpolation transfers (for this result, see [BGR14]). Thus,
for convex theories we essentially obtain a necessary and sufficient condition, in
the precise sense captured by Theorem 8.3.4. We also provide for the first time a
formal proof of the correctness of a combined cover algorithm (the proof for the
sketched combined cover algorithm in [GM08] is missing). We also prove that if
convexity does not hold (e.g., for integer difference logic IDL), the non-convex
equality interpolating property [BGR14] may not be sufficient to ensure the cover
transfer property. As a witness for this, we show that EUF combined with integer
difference logic or with linear integer arithmetic constitutes a counterexample.

The main tool employed in our combination result is the Beth definability theorem
for primitive formulae (this theorem has been shown to be equivalent to the equality
interpolating condition in [BGR14]). In order to design a combined cover algorithm,
we exploit the equivalence between implicit and explicit definability that is supplied
by the Beth theorem. Thus, the combined cover algorithm guesses the implicitly
definable variables, then eliminates them via explicit definability, and finally uses the
component-wise input cover algorithms to eliminate the remaining (not implicitly
definable) variables. The identification and the elimination of the implicitly defined
variables via explicitly defining terms is an essential step toward the correctness
of the combined cover algorithm: when computing a cover of a formula φ(x, y)
(w.r.t. y), the variables x are (non-eliminable) parameters, and those variables
among the y that are implicitly definable need to be discovered and treated in the
same way as the parameters x. Only after this preliminary step (Lemma 8.3.1 below),
the input cover algorithms can be suitably exploited (Proposition 8.3.2 below).

The combination result we obtain is quite strong, as it is a typical ‘black box’
combination result: it applies not only to theories used in verification (like the
combination of real arithmetic with EUF), but also in other contexts. For instance,
since the theory B of Boolean algebras satisfies our hypotheses (being model
completable and strongly amalgamable [GG18]), we get that uniform interpolants
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exist in the combination of B with EUF . The latter is the equational theory
algebraizing the basic non-normal classical modal logic system E from [Seg71]
(extended to n-ary modalities).

At the end of Chapter 8, we also prove that for tame multi-sorted (i.e., not
completely disjoint) theory combinations used for formalizing complex database
schemas extended with “data values” in our applications to DAP verification (see
Section 3.1.1 for details), covers existence transfers to the combined theory under
only the stable infiniteness requirement for the shared sorts: we also provide an
algorithm for computing such combined covers.

3) MCMT: the Database-driven Module. The last contribution of the second
part of the thesis is the preliminary evaluation of the new version of backward
reachability required to handle the verification of RASs. This procedure has
been implemented in mcmt starting from version 2.8. Versions 2.8 and following
of mcmt provide a fully operational counterpart to all the foundational results
presented in Part I and Part II: the capability of formalizing DB schemas and
U-RASs is implemented in the “databased-driven” mode of mcmt, together with
the algorithms for computing covers both in the standard artifact model and in
the one enriched with arithmetic theories.

Even though implementation and experimental evaluation are not the central
goals of our work, we point out that mcmt correctly handles the examples
produced to test verifas [LDV17], as well as additional examples that go beyond
the verification capabilities of verifas. The performance of mcmt to conduct
verification of these examples is very encouraging, and indeed provides the first
stepping stone toward effective, SMT-based verification techniques for artifact-
centric systems.

1.3.3 Contributions of the Third Part

As discussed in Section 1.2, increasing attention has been given in recent years to
multi-perspective models of business processes to capture the interplay between the
process and data dimensions [Rei12]. In the last part of the thesis, we focus on
BPM-oriented applications of our formal framework based on Array-Based Artifact
Systems. In Chapter 11, we present a theoretical and operational framework for
modeling and verifying business processes enriched with data that are formalized
using the BPMN standard language. In Chapter 12, we introduce a Petri net-based
model enriched with relational data that natively supports significant modeling
capabilities for object creations and co-evolution tracking.
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Data-Aware Extensions of BPMN models and Verification

Recent results in the literature on DAP verification, as witnessed by [DLV16; LDV17]
or by the artifact framework that we present in this thesis, come with two strong
advantages. First, they consider the relevant setting where the running process
evolves a set of relations (henceforth called a data repository) containing data
objects that may have been injected from the external environment (e.g., due to
user interaction), or borrowed from a read-only relational database with constraints
(henceforth called catalog). The catalog stores background, contextual facts that
are not updated during the process execution, whereas the repository acts as a
working memory and a log for the process. The second main advantage is that
they employ a symbolic approach for verification, in turn paving the way for the
development of feasible implementations [LDV17; DHV14], or for the exploitation
of state-of-the-art symbolic model checkers (e.g., mcmt).

At the same time, several formalisms have been brought forward to capture
multi-perspective processes based on Petri nets enriched with various forms of
data: from data items locally carried by tokens [RVFE11; Las16], to case data
with different data types [dFM18], and/or persistent relational data manipulated
with the full power of FOL/SQL [DM+17; MR17], and finally fresh case objects
created and (co-)evolved during the execution of the process [Fah19; Pol+19]. While
these formalisms qualify well to capture data-aware extensions of business processes,
they suffer from the main limitation that, on the foundational side, they require
to specify the data present in the read-only storage, and only allow boundedly
many tuples (with an apriori known bound) to be stored in the read-write ones.
A last critical problem is that they mainly provide foundational results that have
not yet led to the development of actual verifiers.

A common limitation of all the formalisms mentioned in this paragraph concerns
the choice of modeling constructs, which often depart from those offered by process
and data modeling standards such as BPMN and SQL, in turn hampering the
adoption of the resulting frameworks. “Verifiability” of models is thus typically
obtained by using abstract languages that do not adhere to well-established
standards when it comes to the data and/or process component: either the control-
flow backbone of the process is captured using Petri nets or other mathematical
formalisms for dynamic systems that cannot be directly understood using front-
end notations such as BPMN, or the data manipulation part is expressed using
abstract, logical operations that cannot be easily represented in concrete data
manipulation languages such as SQL. At the same time, the repertoire of constructs
used to model data-aware processes cannot cover these languages in their full
generality, as verification becomes immediately undecidable if they are not suitably
controlled [CDGM13].

We remark here that in a parallel research line process modeling standards have
been adopted: for instance, in [Mey+13; De +17; Com+18] conventional, activity-
centric approaches, such as the de-facto standard BPMN, have been extended toward
data support, mainly focusing on conceptual modeling and enactment. However,
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these works do not address the problem of verification, nor the more complex one of
parameterized verification. Since the main focus of this thesis is on parameterized
verification of DAPs and on the usage of concrete verifiers for assessing safety in
particular, in the rest of the thesis we will not discuss in more detail the formalisms
that only address the problems of modeling and enactments. From now on, we will
focus only on works that deal with the formal verification of data-aware processes.

DABs: a Theoretical Framework. This leads us to the main question tackled
by the third part of the thesis: how to extend the BPMN standard language towards
data support, guaranteeing the applicability of the existing parameterized verification
techniques and the corresponding actual verifiers, so far studied only in the artifact-
centric setting? We answer this question by considering the theoretical framework
presented in the first part of the thesis and the verification of safety properties (i.e.,
properties that must hold in every state of the analyzed system). Specifically, our
first contribution is a data-aware extension of BPMN called DAB, which supports
case data, as well as persistent relational data partitioned into a read-only catalog
and a read-write repository. Case and persistent data are used to express conditions
in the process as well as task preconditions; tasks, in turn, change the values of the
case variables and insert/update/delete tuples into/from the repository.

The resulting framework is similar, in spirit, to the BAUML approach [EST15],
which relies on UML and OCL instead of BPMN as we do here. While [EST15]
approaches verification via a translation to first-order logic with time, we follow a
different route, by encoding DABs into the array-based artifact system framework
of RASs.

The second contribution relies on the use the backward reachability procedure
studied for RASs: we show that it is sound and complete when it comes to
checking safety of DABs.

The fact that the procedure is sound and complete does not guarantee that
it will always terminate. This brings us to our third contribution: we introduce
further conditions that, by carefully controlling the interplay between the process
and data components, guarantee the termination of the procedure. Such conditions
are expressed as syntactic restrictions over the DAB under study, thus providing a
concrete, BPMN-grounded counterpart of the conditions imposed to RASs (and
based on wqos) to enforce termination. By exploiting the encoding from DABs
to array-based artifact systems, and the soundness and completeness of backward
reachability, we derive that checking safety for the class of DABs satisfying these
conditions is decidable.

To show that our approach goes end-to-end from theory to actual verification,
as a fourth contribution we report some preliminary experiments demonstrating
how mcmt checks safety of DABs.

All in all, DABs provide a powerful framework for modeling and verifying data-
aware extensions of business processes. However, DAB models are still too abstract
to cope with the common limitation on the choice of modeling constructs: although
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they employ the BPMN standard language for representing the process, the data
component and its query language are formulated in a logical way and are closely
related to formal DB schemas and the query language of RASs. We solve this
limitation by introducing the operational counterpart of DABs, i.e., delta-BPMN.

delta-BPMN: an operational and implemented framework. We address
the common limitation on the lack of supported standard languages by proposing
delta-BPMN, an operational framework supporting both modeling and verification
of BPMN enriched with data management capabilities. The fifth contribution that
we provide in this chapter is the introduction of the front-end data modeling and
manipulation language PDMML, supported by delta-BPMN, which instantiates
the data-related aspects of the abstract modeling language of DABs by using a
SQL-based dialect to represent as well as manipulate volatile and persistent data,
and show how it can be embedded into a fragment of BPMN for its process backbone.
Our sixth contribution is how the delta-BPMN front-end can be realized in actual
business process management systems, considering in particular Camunda, one of the
most popular BPMN environments. Finally, as the last contribution of Chapter 11,
we report on the implementation of a translator that takes a delta-BPMN model
created in Camunda and transforms it into the syntax of mcmt.

COA-nets: Catalog and Object-Aware Nets

When dealing with DAPs, one particularly important point is the capability of the
used approaches to flexibly accommodate processes with multiple case objects that
need to co-evolve [Fah19; Art+19]. Several modeling paradigms have tackled this
and other important features: data-/artifact-centric approaches [Hul08; CDGM13],
declarative languages based on temporal constraints [Art+19], and imperative,
Petri net-based notations [MR17; Fah19; Pol+19]. With an interest in (formal)
modeling and verification, in the last chapter of the thesis we concentrate on the
latter stream, taking advantage of the long-standing tradition of adopting Petri
nets as the main backbone to formalize processes expressed in front-end notations
such as BPMN, EPCs, and UML activity diagrams. In particular, we investigate
the combination of two different, key requirements in the modeling and analysis
of data-aware processes. On the one hand, we support the creation of fresh (case)
objects during the execution of the process, and the ability to model their (co-
)evolution using guards and updates. On the other hand, we handle read-only,
persistent data that can be accessed and injected into the objects manipulated by
the process. Importantly, read-only data have to be considered in a parameterized
way. This means that the overall process is expected to operate as desired in a
robust way, irrespectively of the actual configuration of such data.

While the first requirement is commonly tackled by the most recent and
sophisticated approaches for integrating data within Petri nets [MR17; Fah19;
Pol+19], the latter has been extensively investigated in the context of artifact
systems [DLV16], and in particular in the first part of this thesis.
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As the first contribution of the last chapter, we reconcile these two themes in
an extension of Colored Petri Nets (CPNs) called Catalog and Object-Aware nets
(COA-nets). On the one hand, COA-net transitions are equipped with guards that
simultaneously inspect the content of tokens and query facts stored in a read-only,
persistent database. On the other hand, such transitions can inject data into
tokens by extracting relevant values from the database or by generating genuinely
fresh ones. We provide a set of modeling guidelines to highlight these features
in a practical spectrum. The second contribution that we provide is to study the
parameterized safety verification problem for COA-nets, in which one can check
correctness of various properties for any possible catalog instance. To attack this
problem, we systematically encode COA-nets into the database-driven mode of
mcmt. Moreover, we demonstrate an application of the aforementioned encoding
to a simple COA-net. Our last contribution is to obtain some meta-properties on
the verification machinery applied to COA-nets and its relation to the decidability
of the verification problem. We then stress that, thanks to the encoding into mcmt,
a relevant fragment of the model can be readily verified using mcmt, and that
verification of the whole model is within reach. Finally, we discuss how COA-nets
provide a unifying approach for some of the most sophisticated formalisms in this
area, highlighting differences and commonalities.

1.4 Thesis Structure
This thesis is structured as follows (see Section 1.5 for the related publications
mentioned here):

• In Part I we pave the way for SMT-based safety verification of DAPs.
– In Chapter 2, we introduce basic logical and model-theoretic notions, as

well as some preliminaries on the SMT problem and on (typed) relational
databases.

– In Chapter 3, we present the general framework of Array-Based Artifact
Systems, by first introducing DB schemas and then the SAS and
(Universal) RAS model. This chapter is mainly based on the journal
paper JA1.

– In Chapter 4, we present our DAP verification machinery based on our
SMT-based version of backward reachability: we discuss the needed
model-theoretic properties, we prove that such properties are satisfied in
interesting cases for our applications and we prove (partial) correctness
of the procedure for several classes of Array-Based Artifact Systems.
This chapter is partially based on the journal paper JA1.

– In Chapter 5, we describe some decidable classes of Array-Based Artifact
Systems, by proving termination of backward reachability. This chapter
is based on the journal paper JA1.

• In Part II we develop algorithmic techniques, based on automated reasoning,
that are instrumental for our verification machinery.
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– In Chapter 6, we introduce some preliminaries on interpolants, uniform
interpolants (or covers) and their theory combinations, which are needed
for the following chapters.

– In Chapter 7, we focus on the problem of computing covers: we show its
relevance to the verification problem for Array-Based Artifact Systems,
and we study efficient algorithmic techniques for computing covers in
cases interesting for our applications. This chapter is based on the
conference paper CP1, and its extended journal version JA2.

– Chapter 8 studies the problem of computing covers in theory combina-
tions: we study this problem from the theoretical and the algorithmic
perspectives, pointing out how it can be applied to DAP verification.
This chapter is based on the conference paper CP3, and its extended
journal version JA3.

– In Chapter 9, we describe the database-driven mode of mcmt and we
show a first experimental evaluation against a benchmark of concrete
business processes enriched with data.

• In Part III we apply the general framework from Part I to interesting models
of (concrete) business processes enriched with data.
– In Chapter 10, we present some preliminaries on BPM basic notions and

Colored Petri Nets.
– Chapter 11 presents a theoretical framework for modeling and verifying

business processes, called DABs, and its operational and implemented
counterpart delta-BPMN. The first part of this chapter is based on the
conference paper CP2, and the second part on the conference paper CP5.

– Chapter 12 introduces a Petri net-based model enriched with data, called
COA-nets, studying its modeling capabilities and its safety verification.
This chapter is based on the conference paper CP4 and on its extended
journal version JA4.

– In Chapter 13, we conclude the thesis and we discuss the relevant future
work.

In Figure 1.1, we provide a road map of the thesis and the possible paths that
the reader can follow. The numbers in the nodes of the graph stand for Chapters,
Sections or Subsections. Blue paths are suggested for the reader who is interested in
the mathematical details of the framework and in model-theoretic proofs; red paths
are suggested for the reader who is interested in the techniques based on automated
reasoning methods; green paths are suggested for the reader who is interested in
BPM and Petri net-based applications. Black arrows are more ‘neutral’ and may
be followed by any reader. Every possible path is, to some extent, self-contained.
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1.5 Summary of Publications

1.5.1 Publications Related to the Thesis

Journal Articles in Refereed Academic Journals
JA1 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “SMT-

based verification of data-aware processes: a model-theoretic approach”. In:
Mathematical Structures in Computer Science 30.3 (2020), pp. 271–313

JA2 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Model
completeness, Uniform Interpolants and Superposition Calculus (with appli-
cations to verificaton of data-aware processes)”. In: Journal of Automated
Reasoning 65.7 (2021), pp. 941–969

JA3 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Combina-
tion of Uniform Interpolants via Beth Definability”. In: Journal of Automated
Reasoning (To appear). Accepted for publication.

JA4 S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Petri Net-Based Object-
Centric Processes with Read-Only Data”. In: Information Systems (To appear).
Accepted for publication.

JA5 S. Ghilardi, A. Gianola, and D. Kapur. “Uniform Interpolants in EUF:
Algorithms using DAG-representations”. In: Logical Methods in Computer
Science (To appear). Accepted for publication.

Conference Papers with Refereed Proceedings
CP1 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Model

Completeness, Covers and Superposition”. In: Proceedings of CADE 2019.
Vol. 11716. LNCS (LNAI). Springer, 2019, pp. 142–160

CP2 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Formal
Modeling and SMT-Based Parameterized Verification of Data-Aware BPMN”.
in: Proceeding of BPM 2019. Vol. 11675. LNCS. Springer, 2019, pp. 157–175

CP3 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Combined
Covers and Beth Definability”. In: Proceedings of IJCAR 2020. Vol. 12166.
LNCS (LNAI). Springer, 2020, pp. 181–200

CP4 S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Petri Nets with
Parameterised Data - Modelling and Verification”. In: Proceedings of BPM
2020. Vol. 12168. LNCS. Springer, 2020, pp. 55–74

CP5 S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Delta-BPMN: A Concrete
Language and Verifier for Data-Aware BPMN”. in: Proceedings of BPM 2021.
Vol. 12875. LNCS. Springer, 2021, pp. 179–196

CP6 P. Felli, A. Gianola, and M. Montali. “A SMT-based Implementation for
Safety Checking of Parameterized Multi-Agent Systems”. In: Proceedings
of PRIMA 2020. Vol. 12568. LNCS. Best Paper Award. Springer, 2020,
pp. 259–280



1. Introduction 35

CP7 P. Felli, A. Gianola, and M. Montali. “SMT-based Safety Checking of
Parameterized Multi-Agent Systems”. In: Proceedings of AAAI 2021. AAAI
Press, 2021

CP8 P. Felli, A. Gianola, M. Montali, A. Rivkin, and S. Winkler. “CoCoMoT:
Conformance Checking of Multi-perspective Processes via SMT”. in: Proceed-
ings of BPM 2021. Vol. 12875. LNCS. Best Paper Award. Springer, 2021,
pp. 217–234

CP9 S. Ghilardi, A. Gianola, and D. Kapur. “Computing Uniform Interpolants for
EUF via (conditional) DAG-based Compact Representations”. In: Proceedings
of CILC 2020. Vol. 2710. CEUR Workshop Proceedings, 2020, pp. 67–81

Workshop Papers with Refereed Proceedings
WP1 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “Verifica-

tion of Data-Aware Processes: Challenges and Opportunities for Automated
Reasoning”. In: Proceedings of ARCADE 2019. Vol. 311. EPTCS, 2019

WP2 D. Calvanese, A. Gianola, A. Mazzullo, and M. Montali. “SMT-Based Safety
Verification of Data-Aware Processes under Ontologies (Preliminary Results)”.
In: Proceedings of DL 2021. Vol. 2954. CEUR Workshop Proceedings, 2021,
pp. 1–15

WP3 A. Gianola, M. Montali, and M. Papini. “Automated Reasoning for
Reinforcement Learning Agents in Structured Environments”. In: Proceedings
of OVERLAY 2021. Vol. 2987. CEUR Workshop Proceedings, 2021, pp. 43–48

Chapters in Refereed Books
BC1 D. Calvanese, S. Ghilardi, A. Gianola, M. Montali, and A. Rivkin. “From

Model Completeness to Verification of Data Aware Processes”. In: Description
Logic, Theory Combination, and All That. Vol. 11560. LNCS. Springer, 2019,
pp. 212–239

1.5.2 Publications not Related to the Thesis

Journal Articles in Refereed Academic Journals
JA6 S. Ghilardi and A. Gianola. “Modularity results for interpolation, amalgama-

tion and superamalgamation”. In: Annals of Pure and Applied Logic 169.8
(2018), pp. 731–754

JA7 A. Gianola, S. Kasangian, D. Manicardi, N. Sabadini, F. Schiavio, and S. Tini.
“CospanSpan(Graph): a Compositional Description of the Heart System”. In:
Fundamenta Informaticae 171.1-4 (2020), pp. 221–237

Conference Papers with Refereed Proceedings
CP10 S. Ghilardi and A. Gianola. “Interpolation, Amalgamation and Combination
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1.6 Index of Main Notions
Chapter 2

• Quantifier Elimination Procedure: important technique used in automated
reasoning
• Model Completion (Definition 2.4.1): crucial notion at the core of the
verification machinery presented in the thesis
• SMT problem: the most important type of decision problem considered in this
work

Chapter 3

• DB schema (Definition 3.1.1): formalization of a read-only relational database
schema (one of the main contribution of the thesis)
• DB instance (Definition 3.1.2): formalization of a read-only relational database

instance
• DB extended-schema (Definition 3.1.3): formalization of a richer form of

read-only database schema, involving arithmetics (one of the main contribution
of the thesis)
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• DB extended-instance (Definition 3.1.4): formalization of a richer form of
read-only database instance, involving arithmetics (one of the main contribution
of the thesis)
• SAS (Definition 3.2.1): Simple Artifact System, one of the main models, involving

only artifact variables
• RAS (Definition 3.2.3): Relational Artifact System, one of the main models,

involving also artifact relations
• U-RAS (Definition 3.2.2): Universal Relational Artifact System, the most
expressive model of the thesis, involving also artifact relations and universal
guards

Chapter 4

• Finite Model Property: one of the ingredients of our verification machinery
that the DB schema must satisfy
• BReachSAS (Algorithm 1): SMT-based backward reachability procedure for
verifying SASs (one of the main verification procedures)
• BReachRAS (Algorithm 2): SMT-based backward reachability procedure for
verifying RASs (one of the main verification procedures)
• Partial Soundness: meta-property of a verification procedure
• Soundness: meta-property of a verification procedure
• Completeness: meta-property of a verification procedure
• Effectiveness: meta-property of a verification procedure
• Termination: meta-property of a verification procedure

Chapter 5

• Well Quasi Order (wqo): one of the main mathematical ingredients for proving
termination of notable classes of models
• Acyclic SASs: one of the decidable classes
• RASs with Local Updates or Local RASs: one of the decidable classes
• RASs with Tree-like Signatures or Tree-like RASs: : one of the decidable

classes
• Freshness: important modeling feature that U-RASs can partially address

Chapter 6

• Ordinary Interpolant (Definition 6.1.1): useful notion in logic and automated
reasoning
• Uniform Interpolant (Definition 6.1.2) or Cover (Definition 6.1.3): useful

notion in logic and automated reasoning, crucial for our verification machinery
• Equality Interpolating Property (Definition 6.2.1): useful notion and auto-

mated reasoning and essential condition for theory combination in our context
• Beth Definability Property: useful logical notion, employed in our combina-

tion method
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Chapter 7

• Declarative Transition Systems (Definition 7.2.1): generic transition systems
comprising SASs, where model checking requires computing covers
• BReachDTS: SMT-based backward reachability procedure for verifying Declarative
Transition Systems
• EUF : theory of equality and uninterpreted symbols, particularly useful for

formalizing significant DB schemas
• SuperCover: Constrained Superposition Calculus for computing covers in EUF

Chapter 8

• LIA: theory of linear integer arithmetic, useful for formalizing arithmetic
datatypes in U-RASs
• LRA: theory of linear real arithmetic, useful for formalizing arithmetic datatypes

in U-RASs
• ConvexCombCover: algorithm for computing combined covers in the convex case
• TameCombCover: algorithm for computing combined covers for tame combinations

Chapter 9

• MCMT: model checker for verifying safety of infinite-state transition systems
• Database Driven Module: specific module extending traditional mcmt

capabilities so as to formally verify U-RASs

Chapter 10

• BPMN: standard language for modeling business processes
• Colored Petri Nets (Definition 10.2.1): well-known extension of classical

place/transition (or Petri) nets

Chapter 11

• DAB (Definition 11.2.9): Data-Aware BPMN, a formal framework for modeling
and verifying data-aware processes
• DAB schema (Definition 11.2.2): read-only database of DABs
• DAB repository: read-write database of DABs
• DAB data schema: DAB Catalog + DAB Repository
• DAB Updates (insert&set, delete&set, condition update) (Defini-

tion 11.2.8): update specifications in DABs
• DAB process schema: process component of DABs based on the BPMN

standard language
• BReachDAB: SMT-based backward reachability procedure for verifying DABs
• Acyclic DABs: notable decidable case for DABs
• Local DABs: notable decidable case for DABs
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• delta-BPMN: operational and implemented framework for modeling and
verifying DABs
• PDMML: Process Data Modeling and Manipulation Language for delta-BPMN
• Camunda: graphical editor for representing delta-BPMN models

Chapter 12

• COA-net (Definition 12.1.1): Catalog and Object-Aware nets, a data-aware
extension of Petri nets for capturing sophisticated model capabilities and
supporting local freshness
• COA-net Catalog: read-only database of COA-nets
• Bounded COA-nets (Definition 12.1.4): a notable (decidable) class of COA-

nets
• Object Creation Patterns: modeling feature of COA-nets
• Object Relationship Patterns: modeling feature of COA-nets, for representing

many-to-many relations
• Conservative COA-nets: a notable class of COA-nets not supporting fresh
variables
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1. Introduction 41

F
ig
ur
e
1.
2:

C
on

ce
pt
ua

lM
ap

of
th
e
T
he

sis

RA
Ss

Te
rm

in
at

io
n?

YE
S

N
O

U
nd

ec
id

ab
le

 in
 

th
e 

ge
ne

ra
l c

as
e

SM
T

Da
ta

-a
w

ar
e 

Pr
oc

es
se

s

M
od

el
-th

eo
re

tic
 

al
ge

br
a

Ar
ra

y-
ba

se
d 

sy
st

em
s

Pa
ra

m
et

er
iz

ed
 

ve
rif

ic
at

io
n

SM
T-

ba
se

d 
B

ac
kw

ar
d 

R
ea

ch
ab

ili
ty

 fo
r R

AS
s

Ar
tif

ac
t 

Sy
st

em
s

D
at

ab
as

e 
Th

eo
ry

fo
rm

al
ly

 v
er

ifi
ed

 
vi

a

Ar
tif

ac
t 

re
la

tio
ns

Ar
tif

ac
t 

co
m

po
ne

nt
s 

- a
rra

y 
va

ria
bl

es

U-
RA

Ss
SA

Ss

D
ec

id
ab

le
 c

la
ss

es
 

id
en

tif
ie

d

B
PM

A
ut

om
at

ed
 

R
ea

so
ni

ng

C
om

pu
tin

g 
co

ve
rs

El
im

in
at

in
g 

qu
an

tif
ie

rs
 in

 
m

od
el

 
co

m
pl

et
io

ns
 

Su
pe

rp
os

itio
n 

C
al

cu
lu

s

C
on

ve
x 

co
m

bi
na

tio
n 

vi
a 

Be
th

 
de

fin
ab

ilit
y

Ta
m

e 
co

m
bi

na
tio

n

Lo
ca

l 
R

AS
s

Tr
ee

-li
ke

 
R

AS
s

So
un

d 
an

d 
co

m
pl

et
e

C
O

A-
ne

ts

D
AB

s 
de

lta
-B

PM
N

PE
TR

I 
N

ET
S

B
PM

N
 

st
an

da
rd

 
la

ng
ua

ge
SQ

L-
di

al
ec

t

D
at

a-
ex

te
ns

io
ns

 
of

 C
ol

or
ed

 
Pe

tr
i N

et
s

M
ul

ti-
in

st
an

ce
s 

in
te

ra
ct

io
n 

an
d 

fre
sh

ne
ss

R
ea

d-
on

ly
 

D
B 

(c
at

al
og

)

R
A

Ss

U
-R

A
Ss



42



Part I

Foundations of SMT-based Safety
Verification of Artifact Systems

43





2
Preliminaries from Model Theory and
Logic
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In this chapter, we provide the basic preliminaries from first-order logic that are
needed for the first part of the thesis. We also present some notations employed
in this work and some notions from model theory that will be extensively used
for the technical treatment. Finally, we summarize basic notions on classical
relational databases.

2.1 Preliminaries

We adopt the usual first-order (FO) syntactic notions of signature, term, atom,
(ground) formula, and so on; our signatures are multi-sorted and include equality
for every sort. This implies that variables are sorted as well. For simplicity, most
basic definitions in this Section will be supplied for single-sorted languages only (the
adaptation to multi-sorted languages is straightforward). However, we assume that in
general we are in a multi-sorted setting. We compactly represent a tuple 〈x1, . . . , xn〉

45



46 2.1. Preliminaries

of variables as x. The notation t(x), φ(x) means that the term t, the formula φ has
free variables included in the tuple x. The notions of bound and free occurrences of
variables employed along the thesis is the standard one used in first-order logic.

We assume that a function arity can be deduced from the context. Whenever
we build terms and formulae, we always assume that they are well-typed, in the
sense that the sorts of variables, constants, and function sources/targets match.A
formula is said to be universal (resp., existential) if it has the form ∀x(φ(x))
(resp., ∃x(φ(x))), where φ is a quantifier-free formula. Formulae with no free
variables are called sentences.

From the semantic side, we use the standard notion of a Σ-structureM and
of truth of a formula φ in a Σ-structure M under a free variables assignment
α (in symbols, M, α |= φ).

A (FO) Σ-theory T is a set of Σ-sentences; a model of T is a Σ-structureM
where all sentences in T are true. We use the standard notation T |= φ (‘ϕ is
a logical consequence of T ’) to say that φ is true in all models of T for every
assignment to the variables occurring free in φ. We say that φ is T -satisfiable iff
there is a modelM of T and an assignment to the variables occurring free in φ
making φ true inM. Thus, according to this definition, φ is T -satisfiable iff its
existential closure is true in a model of T (notice that this convention might not
be uniform in the literature). A Σ-theory T is complete iff for every Σ-sentence
ϕ, either ϕ or ¬ϕ is a logical consequence of T . Given a Σ1-theory T1 and a
Σ2-theory T2, we call (theory) combination of T1 and T2 the Σ1 ∪Σ2-theory T1 ∪ T2.
In the mono-sorted case, we say that this combination is a (signature-)disjoint
combination (or that it has disjoint signatures) when Σ1 and Σ2 do not have any
symbol in common, apart from the equality symbol. In the multi-sorted case, we say
that the combination is a (signature-)disjoint combination (or that it has disjoint
signatures) when Σ1 and Σ2 do not have any symbol or sort in common, apart from
the equality symbol. In the multi-sorted case, we also say that a combination is
almost disjoint (or that it has almost disjoint signatures) if the only function or
relation symbols in Σ1 ∩ Σ2 are the equality predicates over the sorts in Σ1 ∩ Σ2

(if any sort in Σ1 ∩ Σ2 exists). Differently from what the nomenclature seems to
suggest, it follows from the definitions that (multi-sorted) disjoint combinations
are a particular case of almost disjoint combinations.

A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a conjunction
of literals. The constraint satisfiability problem for T is the following: given an
existential formula ∃y φ(x, y) (with φ a constraint, but, for the purposes of this
definition, we may equivalently take φ to be any quantifier-free formula), to establish
whether there exist a model M of T and an assignment α to the free variables
x such that M, α |= ∃y φ(x, y).

We say that a theory T has the strong finite model property (for constraint
satisfiability) iff every constraint φ that is satisfiable in a model of T is satisfiable
in a finite model of T .
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A theory T has quantifier elimination iff for every formula φ(x) in the signature
of T there is a quantifier-free formula φ′(x) such that T |= φ(x)↔ φ′(x). It is well-
known (and easily seen) that quantifier elimination holds in case we can eliminate
quantifiers from primitive formulae, i.e. from formulae of the kind ∃y φ(x, y), where
φ is a conjunction of literals (i.e. of atomic formulae and their negations). Since
we are interested in effective computability, we consider in this thesis only the
cases where effective quantifier elimination procedures are available: from now on,
whenever we talk about quantifier elimination, an effective procedure for eliminating
quantifiers needs to be given.

2.2 Substructures and Embeddings
Let Σ be a first-order signature. The signature obtained from Σ by adding to it a
set a of new constants (i.e., 0-ary function symbols) is denoted by Σa. Analogously,
given a Σ-structure A, the signature Σ can be expanded to a new signature
Σ|A| := Σ ∪ {ā | a ∈ |A|} by by adding a constant ā (the name for a) for each
element a ∈ |A|, with the convention that two distinct elements are denoted by
different “name” constants (we use |A| to denote the support of the structure A). A
can be expanded to a Σ|A|-structure A′ := (A, a)a∈|A| just interpreting the additional
constants over the corresponding elements. From now on, when the meaning is
clear from the context, we will freely use the notation A and A′ interchangeably:
in particular, given a Σ-structure A, a Σ-formula φ(x) and elements a from |A|,
we will write, by abuse of notation, A |= φ(a) instead of A′ |= φ(ā).

A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structures
A and B is any mapping µ : |A| −→ |B| among the support sets |A| of A and
|B| of B satisfying the condition

A |= ϕ ⇒ B |= ϕ (2.1)

for all Σ|A|-atoms ϕ (here - as above - A is regarded as a Σ|A|-structure, by
interpreting each additional constant a ∈ |A| into itself and B is regarded as a
Σ|A|-structure by interpreting each additional constant a ∈ |A| into µ(a)). In case
condition (2.1) holds for all Σ|A|-literals, the homomorphism µ is said to be an
embedding (denoted by µ : A ↪→ B) and if it holds for all first-order formulae, the
embedding µ is said to be elementary. Notice the following facts:

(a) since we have equality in the signature, an embedding is an injective function;

(b) an embedding µ :M−→ N must be an algebraic homomorphism, that is for
every n-ary function symbol f and for every m1, ...,mn in |M|, we must have
fN (µ(m1), ..., µ(mn)) = µ(fM(m1, ...,mn));

(c) for an n-ary predicate symbol P we must have (m1, ...,mn) ∈ PM iff
(µ(m1), ..., µ(mn)) ∈ PN .
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It can be easily seen that an embedding µ :M−→ N can be equivalently defined as
a map µ : |M| −→ |N | satisfying the conditions (a)-(b)-(c) above. If µ : A −→ B
is an embedding which is just the identity inclusion |A| ⊆ |B|, we say that A
is a substructure of B or that B is an extension of A. A Σ-structure A is said
to be generated by a set X included in its support |A| iff there are no proper
substructures of A including X.

We recall that a substructure preserves and reflects the validity of ground
formulae, in the following sense: given a Σ-substructure A1 of a Σ-structure A2,
a ground Σ|A1|-sentence θ is true in A1 iff θ is true in A2.

2.3 Robinson Diagrams and Amalgamation
Let A be a Σ-structure. The diagram of A, denoted by ∆Σ(A), is defined as the
set of ground Σ|A|-literals (i.e. atomic formulae and negations of atomic formulae)
that are true in A. For the sake of simplicity, once again by abuse of notation, we
will freely say that ∆Σ(A) is the set of Σ|A|-literals which are true in A.

An easy but nevertheless important basic result, called Robinson Diagram
Lemma [CK90], says that, given any Σ-structure B, the embeddings µ : A −→ B
are in bijective correspondence with expansions of B to Σ|A|-structures which are
models of ∆Σ(A). The expansions and the embeddings are related in the obvious
way: ā is interpreted as µ(a). The typical use of the Robinson Diagram Lemma is
the following: suppose we want to show that some structureM can be embedded
into a structure N in such a way that some set of sentences Θ are true. Then, by the
Lemma, this turns out to be equivalent to the fact that the set of sentences ∆(M)∪Θ
is consistent: thus, the Diagram Lemma can be used to transform an embeddability
problem into a consistency problem (the latter is a problem of a logical nature, to be
solved for instance by making use of the compactness theorem for first-order logic).

Amalgamation is a classical algebraic concept. We give the formal definition
of this notion.
Definition 2.3.1 (Amalgamation). A theory T has the amalgamation property
if for every couple of embeddings µ1 :M0 −→M1, µ2 :M0 −→M2 among models
of T , there exists a modelM of T endowed with embeddings ν1 :M1 −→M and
ν2 :M2 −→M such that ν1 ◦ µ1 = ν2 ◦ µ2

M

M1 M2

M0

ν2ν1

µ1 µ2

The triple (M, µ1, µ2) (or, by abuse, M itself) is said to be a T -amalgam
of M1,M2 over M0
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2.4 Model Completions
We recall a standard notion in model theory, namely the notion of a model completion
of a first-order theory [CK90] (we limit the definition to universal theories, because
we shall consider only this case):

Definition 2.4.1 (Model Completion). Let T be a universal Σ-theory and let
T ? ⊇ T be a further Σ-theory; we say that T ? is a model completion of T iff: (i)
every model of T can be embedded into a model of T ?; (ii) for every modelM of
T , we have that T ? ∪∆Σ(M) is a complete theory in the signature Σ|M|.

Since T is universal, condition (ii) is equivalent to the fact that T ? has quantifier
elimination; on the other hand, a standard argument (based on diagrams and
compactness) shows that condition (i) is the same as asking that T and T ? have
the same universal consequences. Thus we have an equivalent definition [Ghi04]
(to be used in the following):

Proposition 2.4.1. Let T be a universal Σ-theory and let T ? ⊇ T be a further
Σ-theory; T ? is a model completion of T iff: (i) every Σ-constraint satisfiable in a
model of T is also satisfiable in a model of T ∗; (ii) T ∗ has quantifier elimination.

As stated before, for the purposes of this thesis we only consider theories with a
model completion that has an effective procedure for eliminating quantifiers in it.
We recall also that the model completion T ? of a theory T is unique, if it exists
(see [CK90] for these results and for examples). It is well-known that a universal
theory T which admits a model completion is also amalgamable [CK90]. The other
way around holds in case T is also locally finite. For our purpose, we define a
theory T to be locally finite iff for every finite tuple of variables x there are only
finitely many T -equivalence classes of atoms A(x) involving only the variables x: the
remarkable fact is that a universal, locally finite theory T having the amalgamation
property admits a model completion.

Example 2.4.2

The theory of undirected graphs admits a model completion (and, hence, is
amalgamable); this is the theory T whose signature Σ contains only a binary
relational symbol R, and whose axioms are specified as follows

T := {∀x¬R(x, x), ∀x∀y (R(x, y)→ R(y, x))} .

Indeed, it is folklore that the model completion of T is the theory of the Rado
graph [Rad64]: a Rado (also called random) graph is a countably infinite graph
in which, given any non-empty sets X = {x0, ..., xm} and Y = {y0, ..., yn} of
nodes with X ∩ Y = ∅, there is a node z (with z 6∈ X ∪ Y ) such that there is
an edge between z and all elements of X and there is no edge between z and
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any element of Y . This theory is first-order definable [Fag76].

2.5 Satisfiability Modulo Theories (SMT)

In this section, we say that a term, an atom, a literal, or a formula is an expression.
Let x be a finite tuple of variables and Σ an FO signature; a Σ(x)-expression is an
expression built out of the symbols in Σ where only (some of) the variables in x
may occur free (we write E(x) to emphasize that E is a Σ(x)-expression).

According to the current practice in the SMT literature [BFT18], an SMT-theory
T is a pair (Σ, Z), where Σ is a signature and Z is a class of Σ-structures; the
structures in Z are the models of T . We assume T = (Σ, Z). A Σ-formula φ is
T -satisfiable in the SMT sense if there exists a Σ-structureM in Z such that φ
is true inM under a suitable assignment a to the free variables of φ (in symbols,
(M, a) |= φ); it is T -valid in the SMT-sense (in symbols, T ` φ) if its negation is
T -unsatisfiable in the SMT-sense. Two formulae φ1 and φ2 are T -equivalent in the
SMT-sense if φ1 ↔ φ2 is T -valid in the SMT-sense. The problem of (quantifier-
free) satisfiability modulo the theory T (SMT (T )) amounts to establishing the
T -satisfiability in the SMT-sense of quantifier-free Σ-formulae. Notice that in case
the SMT-theory T is first-order definable via a set of sentences (i.e., a FO theory in
the classical sense), then the previous definitions are equivalent to the corresponding
classical first-order ones given in the previous sections.

Intuitively, the Satisfiability Modulo Theories (SMT) problem is a decision
problem for the satisfiability of quantifier-free first-order formulae that extends the
problem of propositional (boolean) satisfiability (SAT) by taking into account (the
combination of) background first-order theories (e.g., arithmetics, bit-vectors, arrays,
uninterpreted functions). There exists a plethora of solvers, called SMT solvers,
able to solve the SMT problem: they extend SAT solvers with specific decision
procedures customized for the specific theories involved. SMT solvers are useful
both for computer-aided verification, to prove the correctness of software programs
against some property of interest, and for synthesis, to generate candidate program
fragments. Examples of well-studied SMT theories are the theory of uninterpreted
functions EUF , the theory of bitvectors BV and the theory of arrays AX . All these
theories are usually employed in applications to program verification. SMT solvers
also support different types of arithmetics for which specific decision procedures are
available, like difference logic IDL (whose atoms are of the form x− y ≤ c for some
integer constant c), or linear arithmetics (LIA for integers and LQA for rationals).

SMT-LIB [BFT18] is an international initiative with the aims of providing an
extensive on-line library of benchmarks and of promoting the adoption of common
languages and interfaces for SMT solvers. For the purpose of this thesis, we make
use of the SMT solvers that are supported by the mcmt model checker, i.e., Yices
[Yic; Dut14] and Z3 [dB08; Mic].
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2.6 Definable Extensions and λ-Notations
In the following, we specify transitions of artifact-centric systems using first-order
formulae. To obtain a more compact representation, we make use of definable
extensions as a means to introduce case-defined functions, abbreviating more
complicated (still first-order) expressions. Let us fix a signature Σ and a Σ-theory
T ; a T -partition is a finite set κ1(x), . . . , κn(x) of quantifier-free formulae such that
T |= ∀x∨ni=1 κi(x) and T |= ∧

i 6=j ∀x¬(κi(x) ∧ κj(x)). Given such a T -partition
κ1(x), . . . , κn(x) together with Σ-terms t1(x), . . . , tn(x) (all of the same target sort),
a case-definable extension is the Σ′-theory T ′, where Σ′ = Σ∪{F}, with F a “fresh”
function symbol (i.e., F 6∈ Σ) , and T ′ = T∪⋃ni=1{∀x (κi(x)→ F (x) = ti(x))}. Arity,
source sorts, and target sort for F can be deduced from the context (considering
that everything is well-typed).

Intuitively, F represents a case-defined function, which can be reformulated
using nested if-then-else expressions and can be written as

F (x) := case of {κ1(x) : t1; · · · ;κn(x) : tn}.

By abuse of notation, we shall identify T with any of its case-definable extensions T ′.
In fact, it is easy to produce from a Σ′-formula φ′ a Σ-formula φ that is equivalent to
φ′ in all models of T ′: just remove (in the appropriate order) every occurrence F (v) of
the new symbol F in an atomic formula A, by replacing A with ∨ni=1(κi(v)∧A(ti(v))).

We also exploit λ-abstractions (see, e.g., formula (3.7) below) for more “compact”
representation of some complex expressions, and always use them in atoms like
b = λy.F (y, z) as abbreviations of ∀y. b(y) = F (y, z) (where, typically, F is a
symbol introduced in a case-defined extension as above). Thus, also our formulae
containing lambda abstractions, can be converted into plain first-order formulae.

2.7 Typed Relational Databases with Con-
straints

In this section, we give a brief introduction on relational databases with key
dependencies. In order to do that, we take inspiration from the traditional
formalization of relational databases [AHV95], but we enrich our databases with a
basic notion of types: every attribute is associated to a corresponding type.

Definition 2.7.1. A type is a pair S = 〈∆S,=S〉, where ∆S is a set (called domain
of values), and =S is the equality predicate interpreted in ∆S.

Sometimes, more sophisticated kinds of data types are considered in the literature,
where ∆S is an interpreted structure over some non-trivial first-order signature,
i.e., involving (interpreted) functions and relations. For the sake of simplicity, we
here consider only the case where the domain of values is a pure set equipped
with the equality operator.
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Definition 2.7.2. A type set S is a finite set of types with pairwise disjoint domains
of values. We set ∆S = ⋃

S∈S ∆S.

Note that the pairwise disjointness is set so as to assure that for all types in
S respective domains do not intersect.

For the sake of the the thesis, we restrict our attention on abstract types, i.e.,
disjoint types each of them providing only a domain and an equality attribute.
This is sufficient to create a correspondence with DB schemas of our Data-Aware
Processes introduced in Section 3.1, where interpretation of sorts of DB instances
are sets endowed with equalities. We will see that this framework can be enriched
with more complex data types (e.g., arithmetics) when considering the value sorts
of DB extended-schemas (see Section 3.1.1).

We provide now the definition of typed relation schema.

Definition 2.7.3 (Typed Relation Schema). Let R be a countably infinite set
of relation names. By R(attS) we define an (n-ary) (S-typed) relation schema, where
R is a relation name from R, and attS is an n-tuple of elements (attS1 , . . . , attSn)
such that every component attSi

is associated to a type Si in S. Every component
attSi

is called an attribute of R.

Consider, for example, a typed relational schema Emp(idEid, namestring) de-
noting a binary relation for employees, where the first component is the id of the
employee of type Eid and the second component is the employee name of type
string. When the types are not relevant, we denote the relation schema simply
as R or R/n, where n is the arity of R.

Definition 2.7.4 (Typed Classical Database Schema). A (S-typed) classical
database schema R is a finite set of (S-typed) relation schemas.

Definition 2.7.4 allows us to specify the logical structure of a database. We
now provide a mechanism that allows to concretely instantiate typed relational
schemas, so as to assign actual content to them.

Definition 2.7.5. A (S-typed) relation instance I for a relation schema
R(attS1 , . . . , attSn) is a finite set of facts R(o1, . . . , on) such that oi ∈ ∆Si

, for
i = 1, ..., n.

For example, consider the previously mentioned relation Emp. Then, a
fact Emp(emp127, John Doe) is denoting that employee with id emp127 is called
John Doe.

Definition 2.7.6 (Typed Active Domain). Given a type S ∈ S, and a relation
instance I, the (S-)active domain of I is the set AdomS(I) = {o ∈ ∆S |
there is R(o1, . . . , om) ∈ I s.t. oi = o for some i = 1, ...,m}. We define the active
domain of I as AdomS(I) = ⋃

S∈S AdomS(I).
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We now briefly discuss queries. As query language, we resort to standard first-
order logic (FOL) and interpreted under the active-domain semantics [Lib04; End01].
This means that quantifiers are relativized to the active domain of the database
instance of interest, guaranteeing that queries are domain-independent (actually,
safe–range): their evaluation only depends on the values explicitly appearing in the
database instance over which they are applied. Notice that this query language
is equivalent to the well-known SQL standard [AHV95].

Let us fix a countably infinite set VS of typed variables with a variable typing
function type : VS → S, stipulating that a variable x ranges only over ∆type(x).
For conciseness, we write x :S for type(x) = S and omit the variable type when
irrelevant or clear from the context.

Definition 2.7.7 ((FO(S)) query). A (FO(S)) query Q over a (S-typed) database
schema R has the form {x | ϕ(x)}, where x is the tuple of answer variables of Q,
and ϕ is a FO formula defined as follows:

ϕ ::= y1 =S y2 | R(z) | ¬ϕ | ϕ ∧ ϕ | ∃y.ϕ,
where

• every variable yi (i = 1, 2) is either an element of ∆S or a S-typed variable
from VS with type(yi) = S, for some S ∈ S, and =S is the equality predicate
from S;

• for z = 〈z1, . . . , zn〉, R(S1, . . . , Sn) ∈ R, and every variable zi is either an
element of ∆Si

or a S-typed variable from VS with type(zi) = Si.
• x contains all and only those variables appearing in Q and not belonging to

scope of a quantifier.

A variable x ∈ VS occurring in a FO(S) query Q is free if it does not appear
in the scope of a quantifier: all the answer variables are free. This definition of
free occurrence of a variable is not the standard one used in first-order logic: it
is only instrumental to the presentation of the current section. In the following
chapters we will instead make use of the standard one employed in classical first-
order logic. We use Q(x) to make the answer variables x of Q explicit, and denote
the set of such variables as Free(Q). We use standard abbreviations true, false,
Q1 ∨ Q2 = ¬(¬Q1 ∧ ¬Q2), and ∀x.Q = ¬∃x.¬Q.

Definition 2.7.8 (Boolean query). A query Q is called boolean if it has no free
variables (i.e., Free(Q) = ∅).

Note that boolean queries are nothing but closed FOL formulae whose terms
are either constants from AdomS(I) or quantified variables.

Definition 2.7.9 (Substitution). Given a setX = {x1, . . . , xn} of typed variables,
a substitution for X is a function θ : X → ∆S mapping variables from X into values,
such that for every x ∈ X, we have θ(x) ∈ ∆type(x). A substitution θ for a FO(S)
query Q is a substitution for the free variables of Q.
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We denote byQθ the boolean query obtained fromQ by replacing each occurrence
of a free variable x ∈ Free(Q) with the value θ(x). In this case we sometimes say
that Q is instantiated by θ.

We now provide the definition of query entailment employing the active domain
semantics (i.e, the range of values that quantified variables can be instantiated with
is restricted to the active domain of a given relation instance I).

Definition 2.7.10 (Query entailment). Given an S-typed database schema R,
an S-typed instance I over R, a FO(S) query Q over R, and a substitution θ for
Q, we inductively define when I entails Q under θ, written I, θ |= Q, as follows:

I, θ |= R(~x) if R(~x)θ ∈ I
I, θ |= ¬Q if I, θ 6|= Q
I, θ |= Q1 ∧Q2 if I, θ |= Q1 and I, θ |= Q2
I, θ |= ∃x.Q if there exists o ∈ Adomtype(x)(I) such that I, θ[x/o] |= Q

where θ[x/o] denotes the substitution obtained from θ by assigning o to x.

Definition 2.7.11 (Query answers). Given a S-typed database schema R, a
S-typed instance I over R, and a FO(S) query Q over R, the set of answers to Q
in I is defined as ans(Q, I) = {θ : Free(Q)→ AdomS(I) | I, θ |= Q}.

When Q is boolean, we write ans(Q, I) ≡ true if ans(Q, I) consists only of
the empty substitution (denoted 〈〉), and ans(Q, I) ≡ false if ans(Q, I) = ∅.

We now fix the classical database schema R for the rest of the section. Boolean
queries can be employed to express constraints over R. We use constraints in
the context of relational databases to impose an additional structure over their
database instances: in fact, given a constraint Φ, we would like to require that each
database instance satisfies it. Formally, a database instance I satisfies a constraint
Φ (or that Φ holds in I if ans(Φ, I) ≡ true. We introduce explicitly two common
types of constraints that are the only ones that will be used in this thesis: primary
keys and foreign keys. We focus on primary keys and not keys because we will
define one and only one (primary) key per relation.

Definition 2.7.12 (Primary Keys). Given a relation R/n and a set of attributes
N ′ of R (with |N ′| = n′ < n), which we suppose w.l.o.g. to be the first n′ attributes
of R, we say that N is a primary key for R, or that the constraint pk(R) = N ′

holds (and it expresses that the projection R[N ′] of R on N ′ is a primary key for
R), if every database instance I satisfies the following formula

∀x1, . . . , xn′ ,y1 . . . , yn−n′ , y′1 . . . , y
′
n−n′ , R(x1, . . . , xn′ , y1, . . . , yn−n′)∧

∧R(x1, . . . , xn′ , y′1, . . . , y
′
n−n′)→

n−n′∧
i=1

yi = y′i.
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For the sake of simplicity, we restrict our definition of foreign keys to the case
where a relation R refers only a unique relation S: this definition can be easily
generalized to the case that the foreign keys dependencies starting from R are more
than one (the notation to employ in the general case would be tedious).

Definition 2.7.13 (Foreign Keys). Given a relation R/n and S/m, let N ′ be a
set of attributes of R (with |N ′| = n′ < n), which we suppose w.l.o.g. to be the
last n′ attributes of R, and let M ′ be a set of attributes of S (with |M ′| = m′ < m,
m′ = n′), which we suppose w.l.o.g. to be the first m′ attributes of S. We say that
N is a foreign key for R pointing to S, or that the constraint R[N ′] ⊆ S [M ′], or
R[N ′]→ S [M ′], holds (and it expresses that the projection R[N ′] of R on N ′ refers
the projection S [M ′] of S on M ′, which has to be a key for S), if every database
instance I satisfies the following formula:

∀x1, . . . , xn−n′ , y1 . . . , yn′ .R(x1, . . . , xn−n′ , y1, . . . , yn′)→
∃z1 . . . , zm−m′ .S(y1, . . . , yn′ , z1 . . . zm−m′);

and I satisfies the constraint pk(S) = M ′, i.e.

∀y1, . . . , ym′ ,z1 . . . , zm−m′ , z′1 . . . , z
′
m−m′ , S(y1, . . . , ym′ , z1, . . . , ym−m′)∧

∧ S(y1, . . . , ym′ , z′1, . . . , z
′
m−m′)→

m−m′∧
i=1

zi = z′i.



56



3
Array-Based Artifact Systems: General
Framework

Contents
3.1 Read-only DB Schemas . . . . . . . . . . . . . . . . . . . 59

3.1.1 DB Extended-Schemas . . . . . . . . . . . . . . . . . . . 61
3.1.2 Relational View of DB Schemas . . . . . . . . . . . . . . 62

3.2 Array-Based Artifact Systems . . . . . . . . . . . . . . . 64
3.2.1 SAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 U-RAS . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

In this chapter, we introduce Array-based Artifact Systems – a rich and powerful
theoretical framework for the formal specification and verification of Data-Aware
Processes (DAPs). In the following, for the sake of conciseness, we will sometimes
leave the nomenclature ‘Array-based’ implicit.

DAPs can be generally thought of as dynamic systems whose execution is
guided by processes that can interact via queries and updates with a full-fledged
relational database. As the reader can expect, the concept of DAP is quite
generic and embraces a plethora of different formalisms, each of them with different
features and assumptions on the concrete behavior it is supposed to model. In
this context, one of the most famous and studied classes of formalisms is given by
artifact systems. As already mentioned in the introduction, artifact systems are
traditionally formalized using three components: (i) a read-only database (DB),
storing background information that does not change during the system evolution;
(ii) an artifact working memory, storing data and lifecycle information about
artifact(s) that does change during the evolution; (iii) actions (also called services)
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that access the read-only database and the working memory, and determine how
the working memory itself has to be updated.

In this chapter, we adopt this setting too. In the first section we define
DB schemas, which formalize the read-only database component of our Artifact
Systems, and then DB extended schemas, which enrich DB schemas with additional
constrained datatypes such as arithmetic values. DB schemata exploit an algebraic,
functional representation of relations and of their (primary and foreign) key
dependencies: this representation is necessary in order to make our verification
machinery (presented in the next chapter) fully operational. Nevertheless, we will
show in Subsection 3.1.2 that DB schemas can be interpreted in the standard
relational model.

Different models of artifact systems have been considered in the literature,
depending in particular on the assumptions made over the shape of the working
memory. In the course of this chapter (Section 3.2), we introduce two different
well-studied variants of Artifact Systems and formulate them in the array-based
setting. Both variants assume a read-only database storage that is formalized by a
DB schema; they differ in the type of working memory used by the process.

The first variant works over a fixed set of so-called artifact variables, altogether
instantiated into a single tuple of data. In this respect, in Subsection 3.2.1 we
introduce the formal model of Simple Artifact Systems (SASs). There, we also
give a concrete, simple example of SAS.

More recently (e.g. [DLV16; LDV17; DLV19]), more sophisticated types of
artifact systems have been considered, where the working memory is not only
equipped with artifact variables as in SASs, but also with so-called artifact relations.
These relations change over time and can store arbitrarily many tuples, each
accounting for a different artifact instance that can be separately evolved on its
own. In this respect, in Subsection 3.2.2 we define the formal model of Universal
Relational Artifact Systems (Universal RASs, or, simply, U-RASs), and then a
slightly weaker variant of U-RASs called (plain) RASs. In that subsection, we also
provide a sophisticated example of (Universal) RAS inspired by a concrete job
hiring process within a company. The difference between U-RASs and RASs lies in
the fact that the transitions of the former contain, besides standard (existential)
guards, also universal guards (i.e. they use a universal quantification over tuples
of artifact relations), whereas the latter can only use (existential) guards.

Both SASs and (Universal) RASs are formalized in the spirit of array-based
systems [GR10a], a formalism that provides a theoretical framework for assessing
safety of infinite-state systems. The main intuitions behind array-based systems
are briefly recalled at the beginning of Section 3.2. For both SASs and (Universal)
RASs we will study the problem of parameterized safety verification in the next
chapter: the goal of performing SMT-based safety verification motivates by itself
the choice of employing array-based systems.
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3.1 Read-only DB Schemas
We now provide a formal definition of (read-only) DB schemas by relying on an
algebraic, functional characterization. In the next chapter, we will argue why we
need this functional representation for verifying Artifact Systems and we will derive
some key model-theoretic properties instrumental to the technical treatment of our
verification machinery. In the following, we sometimes refer to the setting of DB
schemas as the “database-driven setting” of our Artifact Systems.

Definition 3.1.1 (DB schema). A DB schema is a pair 〈Σ, T 〉, where: (i) Σ is
a DB signature, that is, a finite multi-sorted signature whose only symbols are
equality, unary functions, and constants; (ii) T is a DB theory, that is, a set of
universal Σ-sentences.

Next, we refer to a DB schema simply through its (DB) signature Σ and (DB)
theory T . Given a DB signature Σ, we denote by Σsrt the set of sorts and by
Σfun the set of functions in Σ. Since Σ contains only unary function symbols and
equality, all atomic Σ-formulae are of the form t1(v1) = t2(v2), where t1, t2 are
possibly complex terms, and v1, v2 are either variables or constants.

We associate to a DB signature Σ a characteristic (directed) graph G(Σ)
capturing the dependencies induced by functions over sorts. Specifically, G(Σ)
is an edge-labeled graph whose set of nodes is Σsrt , and with a labeled edge S f−→ S ′

for each f : S −→ S ′ in Σfun. We say that Σ is acyclic if G(Σ) is so. The leaves of
Σ are the nodes of G(Σ) without outgoing edges. These terminal sorts are divided
in two subsets, respectively representing unary relations and value sorts. Non-value
sorts (i.e., unary relations and non-leaf sorts) are called id sorts, and are conceptually
used to represent (identifiers of) different kinds of objects. Value sorts, instead,
represent datatypes such as strings, numbers, clock values, etc. We denote the set
of id sorts in Σ by Σids, and that of value sorts by Σval , hence Σsrt = Σids ] Σval .

We now consider extensional data.

Definition 3.1.2 (DB instance). A DB instance of DB schema 〈Σ, T 〉 is a Σ-
structureM that is a model of T and such that every id sort of Σ is interpreted in
M on a finite set.

Contrast this to arbitrary models of T , where no finiteness assumption is made.
What may appear as not customary in Definition 3.1.2 is the fact that value sorts can
be interpreted on infinite sets. This allows us, at once, to reconstruct the classical
notion of DB instance as a finite model (since only finitely many values can be pointed
from id sorts using functions), at the same time supplying a potentially infinite set
of fresh values to be dynamically introduced in the working memory during the
evolution of the artifact system. More details on this will be given in Section 3.1.2.

We respectively denote by SM, fM, and cM the interpretation in M of the
sort S (this is a set), of the function symbol f (this is a set-theoretic function),
and of the constant c (this is an element of the interpretation of the corresponding
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UserId userName

EmpId empName

CompInId who what

JobCatId jobCatDescr

String

id : UserId userName : StringUser

id : EmpId empName : StringEmployee

id : CompInId who : EmpId what : JobCatIdCompetentIn

id : JobCatId jobCatDescr : StringJobCategory

Figure 3.1: On the left: characteristic graph of the human resources DB signature from
Example 3.2.6. On the right: relational view of the DB signature; each cell denotes an
attribute with its type, underlined attributes denote primary keys, and directed edges
capture foreign keys.

sort). Obviously, fM and cM must match the sorts in Σ. E.g., if f has source S
and target U , then fM has domain SM and range UM.

Example 3.1.3

We give an example of a DB schema: this read-only database will be the data
storage of the business process used as running example (together with its
variants) in the thesis. The human resource (HR) branch of a company stores
the following information inside a relational database: (i) users registered
to the company website, who are potentially interested in job positions
offered by the company; (ii) the different, available job categories; (iii) HR
employees, together with the job categories they are competent in (in turn
indicating which job applicants they could interview). To formalize these
different aspects, we make use of a DB signature Σhr consisting of: (i) four
id sorts, used to respectively identify users, employees, job categories, and
the competence relationship connecting employees to job categories; (ii) one
value sort containing strings used to name users and employees, and describe
job categories. In addition, Σhr contains five function symbols mapping:
(i) user identifiers to their corresponding names; (ii) employee identifiers to
their corresponding names; (iii) job category identifiers to their corresponding
descriptions; (iv) competence identifiers to their corresponding employees and
job categories. The characteristic graph of Σhr is shown in Figure 3.1 (left part).
/

We close the formalization of DB schemas by discussing DB theories. The
role of a DB theory is to encode background axioms to express constraints on the
different elements of the corresponding signature. We illustrate a typical background
axiom, required to handle the possible presence of undefined identifiers/values in the
different sorts. This, in turn, is essential to capture artifact systems whose working
memory is initially undefined, in the style of [DLV16; LDV17]. To accommodate this,
to specify an undefined value we add to every sort S of Σ a constant undefS (written
from now on, by abuse of notation, just as undef, used also to indicate a tuple).
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Then, for each function symbol f of Σ, we add the following axiom to the DB theory:

∀x (x = undef ↔ f(x) = undef) (3.1)

This axiom states that the application of f to the undefined value produces an
undefined value, and it is the only situation for which f is undefined.

Remark 3.1.1. In the artifact-centric model in the style of [DLV16; LDV17] that
we intend to capture, the DB theory consists of Axioms (3.1) only. However, our
technical results do not require this specific choice, and more general sufficient
conditions will be discussed in Section 4.6.

3.1.1 DB Extended-Schemas
If desired, we can freely extend DB schemas by adding arbitrary n-ary relation
symbols to the signature Σ, or by combining DB schemas with an additional theory
T ′ constraining value sorts. For this purpose, we give the following definition.

Definition 3.1.3 (DB extended-schema). A DB extended-schema is a pair
〈Σ ∪ Σ′, T ∪ T ′〉, where:
(i) Σ (called strong DB signature) is a DB signature plus n-ary relations;
(ii) T (called strong DB theory) is a set of universal Σ-sentences.
(iii) Σ′ (called value signature) is a finite multi-sorted signature, s.t. the only

function or relation symbols in Σ ∩ Σ′ are the equality predicates over the
common sorts in Σ ∩ Σ′ and the sorts in Σ ∩ Σ′ can only be the codomain sort
(and not a domain sort) of a symbol from Σ other than an equality predicate.

(iv) T ′ (called value theory) is a set of universal Σ′-sentences.
We respectively call Σ ∪ Σ′ and T ∪ T ′ the DB extended-signature and the DB
extended-theory of the DB extended-schema.

Intuitively, DB extended-schemas are combinations of a DB schema possibly
extended with n-ary relations (supposed to formalize the read-only database) and
another theory T ′ in another language Σ′ (supposed to formalize other data/value
domains, possibly completely disjoint from the read-only DB). This combination is
what in Section 8.5 we call tame combination, i.e. an ‘almost disjoint’ combination
in which if a relation or a function symbol has as among its domain sorts a sort
from Σ ∩ Σ′, then this symbol is from Σ′ (and not from Σ, unless it is the equality
predicate). The (multi-sorted) disjoint signature combination is contemplated since
it is a particular case of tame combination.

All the sorts from Σ′ are called value sorts as well as the value sorts from the
(strong) DB signature Σ. The intuition behind tame combinations is that, since the
sorts of Σ′ are interpreted as value sorts, there cannot be a function from the DB
signature Σ (i.e., formalizing a key dependency) that has a sort of Σ′ as its domain,
otherwise this sort should be interpreted as an id sort. An example of DB extended-
schema is given by the combination of a (ordinary) DB schema with an arithmetic
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theory T ′ as linear integer arithmetic (LIA) or linear real arithmetic (LRA). T ′
itself can be the (mono-sorted) disjoint-signature combination of different theories,
e.g., LRA and EUF , or LRA and suitable data structures.

Definition 3.1.4 (DB extended-instance). A DB extended-instance of a DB
extended-schema 〈Σ, T 〉 is a Σ∪Σ′-structureM that is a model of T ∪ T ′ and such
that every id sort of Σ is interpreted inM on a finite set.

For simplicity, even if our implementation takes into account also the case of
DB schemas extended with “free” relations, i.e. without key dependencies, we
restrict our focus on DB schemas, which are sufficient to capture those constraints
(as explained in the following subsection). The extension is straightforward and
left to the reader. In fact, we can give in a analogous way the definitions of
the characteristic graph G(Σ) and of acyclicity for extended DB schemas. We
notice that, in case Assumption 4.1.1 discussed below holds for DB extended-
theories, all the results presented in Chapter 4 still hold even considering DB
extended-schemas instead of DB schemas.

3.1.2 Relational View of DB Schemas
One might be surprised by the fact that signatures in our DB schemas contain
unary function symbols, instead of relational symbols. The algebraic, functional
characterization of DB schema and instance presented above can be actually
reinterpreted in the classical, relational model (see Section 2.7 for preliminaries
on classical relational databases), so as to reconstruct the requirements posed
in [LDV17]. In this last work, the schema of the read-only database must satisfy
the following conditions: (i) each relation schema has a single-attribute primary
key; (ii) attributes are typed; (iii) attributes may be foreign keys referencing other
relation schemas; (iv) the primary keys of different relation schemas are pairwise
disjoint. We now discuss why these requirements are matched by DB schemas.
Definition 3.1.1 naturally corresponds to the definition of relational database schemas
equipped with single-attribute primary keys and foreign keys (plus a reformulation
of constraint (3.1)). To technically explain the correspondence, we adopt the named
perspective, where each relation schema is defined by a signature containing a
relation name and a set of typed attribute names. Let 〈Σ, T 〉 be a DB schema. Each
id sort S ∈ Σids corresponds to a dedicated relation RS with the following attributes:
(i) one identifier attribute idS with type S; (ii) one dedicated attribute af with
type S ′ for every function symbol f ∈ Σfun of the form f : S −→ S ′.

The fact that RS is built starting from functions in Σ naturally induces different
database dependencies in RS. In particular, for each non-id attribute af of RS,
we get a functional dependency from idS to af ; altogether, such dependencies in
turn witness that idS is the (primary) key of RS. In addition, for each non-id
attribute af of RS whose corresponding function symbol f has id sort S ′ as image,
we get an inclusion dependency from af to the id attribute idS′ of RS′ ; this captures
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that af is a foreign key referencing RS′ . For details on the general definitions of
primary and foreign keys, see Section 2.7.

Example 3.1.4

The diagram on the right in Figure 3.1 graphically depicts the relational view
corresponding to the DB signature of Example 3.2.6. /

Given a DB instanceM of 〈Σ, T 〉, its corresponding relational instanceR[M] (or
I) is the minimal set satisfying the following property: for every id sort S ∈ Σids, let
f1, . . . , fn be all functions in Σ with domain S; then, for every identifier oM ∈ SM,
R[M] contains a labeled fact of the form RS(idS :oM, af1 : f1(o)M, . . . , afn : fn(o)M),
where attr :cM means that the element cM corresponds to the attribute attr
of the relation RS.

Remark 3.1.2. If, instead of a DB schema, we consider a DB extended-schema
obtained by adding “free” relations to a pre-existing DB schema, we keep the natural
interpretation for these relations. Formally, the relational instance R[M] contains
also the tuples from rM, for every relational symbol r from Σ (these relational
symbols represent plain relations, i.e. those not possessing a key).

With this interpretation, the active domain of R[M] (or of I), denoted with
AdomΣids(R[M]) (or AdomΣids(I)), is the set⋃

S∈Σids
(SM \ {undefM})

∪
{
v ∈

⋃
V ∈Σval

VM

∣∣∣∣∣ v 6= undefM and there exist f ∈ Σfun
and oM ∈ dom(fM) s.t. f(o)M = v

}

consisting of all (proper) identifiers assigned byM to id sorts, as well as all values
obtained inM via the application of some function. Since such values are necessarily
finitely many, one may wonder why in Definition 3.1.2 we allow for interpreting
value sorts over infinite sets. The reason is that, in our framework, an evolving
artifact system may use such infinite provision to inject and manipulate new values
into the working memory. From the definition of active domain above, exploiting
Axioms (3.1) we get that the membership of a tuple (x0, . . . , xn) to a generic n+ 1-
ary relation RS with key dependencies (corresponding to an id sort S) can be
expressed in our setting by using just unary function symbols and equality:

RS(x0, . . . , xn) iff x0 6= undef ∧ x1 = f1(x0) ∧ · · · ∧ xn = fn(x0) (3.2)

where fi is as defined above (i.e., the unary function that has as domain the id sort
S and as image the sort S ′ corresponding to the attribute afi

of RS).
Hence, the representation of negated atoms is the one that directly follows

from negating (3.2):
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Fig. 4: The job hiring process. Elements in squared brackets attach the update specifi-
cations in Examples 3 and 4 to corresponding tasks/events.
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Fig. 5: Graphical intuition showing the evolution of different array-based systems. The
current state of the array is represented in green, whereas consequent states resulting
from updates are shown in blue and violet. Empty cells implicitly hold the undef value
of their corresponding type.

of D (cf. Section 2.1), and a further assignment mapping each block in P to its current
lifecycle state.

Initially, the data snapshot fixes the immutable content of the catalog D.cat, while
the repository instance is empty, the case assignment is initialized to all undef, and the
control assignment assigns to all blocks in P the idle state, with the exception of P
itself, which is enabled. At each moment in time, the M-snapshot is then evolved by
nondeterministically evolving the case through one of the executable steps in the pro-
cess, depending on the current M-snapshot. If the execution step is about the progres-
sion of the case inside the process control-flow, then the control assignment is updated.
If instead the execution step is about the application of some update effect, the new M
-snapshot is then obtained by following Section 2.2.

3 Parameterized Verification of Safety Properties

We now focus on parameterized verification of DABs using SMT-based techniques
grounded in the theory of arrays.

13

Figure 3.2: Graphical intuition showing the evolution of an array-based system. The
current state of the array is represented in green, whereas consequent states resulting
from updates are shown in blue: the shown update corresponds to the insertion of value
"s" into an “empty” array whose elements have string type. Empty cells implicitly hold
the undefined string.

¬RS(x0, . . . , xn) iff x0 = undef ∨ x1 6= f1(x0) ∨ · · · ∨ xn 6= fn(x0) (3.3)

This relational interpretation of DB schemas exactly reconstructs all the
requirements posed by [DLV16; LDV17] on the schema of the read-only database
presented at the beginning of this Section.

We stress that all such requirements are natively captured in our functional
definition of a DB signature, and do not need to be formulated as axioms in
the DB theory. The DB theory is used to express additional constraints, like
that in Axiom (3.1). In the following chapter, we will thoroughly discuss which
properties must be respected by signatures and theories to guarantee that our
verification machinery is well-behaved.

One may wonder why we have not directly adopted a relational view for DB
schemas. This will become clear during the technical development. We anticipate
the main, intuitive reasons. First, our functional view allows us to guarantee that
our framework remains well-behaved even in the presence of key dependencies, since
our DB theories do enjoy the crucial condition of Assumption 4.1.1 introduced below
(i.e., that the DB theories admit a model completion), whereas relational structures
with key constraints do not. Second, our functional view makes the dependencies
among different types explicit. In fact, our notion of characteristic graph, which is
readily computed from a DB signature, exactly reconstructs the central notion of
foreign key graph used in [DLV16] towards the main decidability results.

3.2 Array-Based Artifact Systems
Since SASs and U-RASs are formalized in the spirit of array-based systems, we
start by recalling the intuition behind them.

In general terms, an array-based system logically describes the evolution of array
data structures of unbounded size. Figure 3.2 intuitively shows a simple array-based
system consisting of a single array storing strings. The logical representation of
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array-based systems relies on a multi-sorted theory that contains two types of sorts,
one accounting for the array indexes, and the other for the elements stored in the
array cells. The system variables changing over time are both individual first-order
variables for data and second-order variables for arrays. Since the content of an
array changes over time, it is referred to using a (second-order) function variable,
called array state variable, whose interpretation in a state is that of a total function
mapping indexes to elements (so that applying the function to an index denotes the
classical read operation for arrays): for each index, this function returns the element
stored by the array in that index. In the initial green state of Figure 3.2, the array
a is interpreted as a total function mapping every index to the undefined string.

Starting from an initial configuration, the interpretation changes when moving
from one state to another, reflecting the intended manipulation on the array. Hence,
the definition of an array-based system with array state variable a always requires
(i) a state formula I(a) describing the initial configuration(s) of the array a; (ii) a
formula τ(a, a′) describing the transitions that transform the content of the array
from a to a′. By suitably using logical operators, τ can express in a single formula
a repertoire of different updates over a.

In such a setting, one of the most fundamental, and studied, verification problem
is that of checking whether the evolution induced by τ over a starting from a
configuration in I(a) eventually reaches one of the unsafe configurations described
by a state formula K(a). This, in turn, can be tackled by showing that the formula
I(a0) ∧ τ(a0, a1) ∧ · · · ∧ τ(an−1, an) ∧ K(an) is satisfiable for some n. If no such
n exists, then no finite run of the system can reach the undesired configurations,
and hence the system is safe. Several mature model checkers exist to ascertain
(un)safety of these type of systems, such as mcmt [GR10b] and cubicle [Con+12].

In the following sections, we make these ideas formally precise by grounding
array-based systems in the artifact-centric setting. We will first consider the simpler
case of SASs, where we only have individual variables for data, and then we pass
to the complete framework of U-RASs where we also have second order variables
formalizing artifact relations (that is, relations which are mutable during system
evolution), and universal guards (employing universal quantifiers) in transitions.

3.2.1 Simple Artifact Systems

The SAS Formal Model. In this subsection we consider systems manipulating
only individual variables and reading data from a given database instance. In
order to introduce verification problems in a symbolic setting, one first has to
specify which formulae are used to represent sets of states, the system initializations,
and system evolution. Given a DB schema 〈Σ, T 〉 and a tuple x = x1, . . . , xn of
variables, we introduce the following classes of Σ-formulae:
– a state formula is a quantifier-free Σ-formula φ(x);
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– an initial formula is a conjunction of equalities of the form ∧n
i=1 xi = ci, where

each ci is a constant (typically, ci is an undef constant mentioned in Section 3.1
above);

– a transition formula tr is an existential formula

∃y
(
G(x, y) ∧ ∧ni=1 x

′
i = Fi(x, y)

)
(3.4)

where x′ are renamed copies of x, G is quantifier-free and F1, . . . , Fn are case-
defined functions. We call G the guard and Fi the updates of Formula (3.4).
As discussed in Subsection 1.3.1, the existentially quantified “data” variables y

that appear in transitions are a distinctive and essential feature of Artifact Systems:
they are crucial to express existential queries over the DB schema, to retrieve data
elements from it and also to represent (non-deterministic) external user inputs.

Definition 3.2.1 (SAS). A Simple Artifact System (SAS) has the form

S = 〈Σ, T, x, ι(x), τ(x, x′)〉

where: (i) 〈Σ, T 〉 is a DB schema, (ii) x = x1, . . . , xn are variables (called artifact
variables), (iii) ι is an initial formula, and (iv) τ is a disjunction of transition
formulae of the type (3.4).

A formula tr of the kind (3.4) is a single transition formula, where τ from
Definition 3.2.1 is a disjunction of formulae of the kind (3.4); hence, such τ
symbolically represents the union of all the possible transitions of the system.
The formula τ is very general, so it allows to formalize expressive features such as
nondeterminism: this is essential for modeling, e.g., the behavior of an external
user that interacts with the system in a nondeterministic way. We will omit the
dependence of ι (and τ) from x (and x, x′, respectively) when clear from the context.

In SASs, the DB schema 〈Σ, T 〉 is intended to formalize the read-only database.
The working memory, formalized by the tuple of artifact variables x, interacts
with the read-only database via the transitions τ . As noticed in Subsection 3.1.1,
the DB schema 〈Σ, T 〉 can be substituted with a generic DB extended-schema
〈Σ ∪ Σ′, T ∪ T ′〉 , for example with T ′ := LRA (linear real arithmetic).

Example 3.2.5

We consider a SAS working over the DB schema of Example 3.1.3. It captures
a global, single-instance artifact tracking the main, overall phases of a hiring
process. The job hiring artifact employs a dedicated pState variable to store
the current process state. Initially, hiring is disabled, which is captured by
setting the pState variable to undef. A transition of the process from disabled
to enabled may occur provided that the read-only HR DB contains at least one
registered user (who, in turn, may decide to apply for a job). Technically, we
introduce a dedicated artifact variable uId initialized to undef, and used to load
the identifier of such a registered user, if (s)he exists. The enabling action is
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then captured by the following transition formula:

∃y : UserId
(

pState = undef ∧ y 6= undef
∧ pState′ = enabled ∧ uId ′ = y

)

The existential quantified variable y : UserId is a data variable pointing to
the read-only DB and is used to represent an external user input. Notice in
particular how the existence of a user is checked using the typed variable y,
checking that it is not undef and correspondingly assigning it to uId. /

3.2.2 Universal Relational Artifact Systems

The U-RAS Formal Model. Following the tradition of artifact-centric systems
[Deu+09; DLV16], a Universal Relational Artifact System (U-RAS) consists of a
read-only database, a read-write working memory for artifacts, and a finite set of
actions (also called services) that inspect the relational database and the working
memory, and determine the new configuration of the working memory. In a U-RAS,
the working memory consists of individual and higher order variables. These higher
order variables (usually called arrays) are supposed to model evolving relations,
so-called artifact relations in [DLV16; LDV17]. The idea is to treat artifact relations
in a uniform way as we did for the read-only database: we need extra sort symbols
(recall that each sort symbol corresponds to a database relation symbol) and extra
unary function symbols, the latter being treated as second-order variables.

Given a DB signature Σ, an artifact extension of Σ is a signature Σext obtained
from Σ by adding to it some extra sort symbols1. These new sorts (usually indicated
with E,E1, E2 . . . ) are called artifact sorts (or artifact relations by some abuse
of terminology), whereas the old sorts from Σ are called basic sorts. In U-RAS,
artifacts and basic sorts correspond, respectively, to the index and the elements
sorts mentioned in the literature on array-based systems. Below, given 〈Σ, T 〉 and
an artifact extension Σext of Σ, when we speak of a Σext-model of T , a DB instance
of 〈Σext , T 〉, or a Σext-model of T ∗, we mean a Σext-structureM whose reduct to Σ
respectively is a model of T , a DB instance of 〈Σ, T 〉, or a model of T ∗.

An artifact setting over Σext is a pair (x, a) given by a finite set x of individual
variables and a finite set a of unary function variables: the latter are required to
have an artifact sort as source sort and a basic sort as target sort. Variables in
x are called (as before) artifact variables, and variables in a artifact components.
Given a DB instanceM of Σext, an assignment to an artifact setting (x, a) over
Σext is a map α assigning to every artifact variable xi ∈ x of sort Si an element
xα ∈ SMi and to every artifact component aj : Ej −→ Uj (with aj ∈ a) a set-
theoretic function aαj : EMj −→ UMj .

We can view an assignment to an artifact setting (x, a) as a DB instance
extending the DB instanceM as follows. Let all the artifact components in (x, a)

1By ‘signature’ we always mean ’signature with equality’, so as, soon as new sorts are added,
the corresponding equality predicates are added too.
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having source E be ai1 : E −→ S1, · · · , ain : E −→ Sn. Viewed as a relation in the
artifact assignment (M, α), the artifact relation E “consists” of the set of tuples

{〈e, aαi1(e), . . . , aαin(e)〉 | e ∈ EM}

Thus each element of E is formed by an “entry” e ∈ EM (uniquely identifying
the tuple) and by “data” aαi (e) taken from the read-only databaseM. When the
system evolves, the set EM of entries remains fixed, whereas the components aαi (e)
may change: typically, we initially have aαi (e) = undef, but these values are changed
when some defined values are inserted into the relation modeled by E; the values are
then repeatedly modified (and possibly also reset to undef, if the tuple is removed
and e is re-set to point to undefined values). In accordance with mcmt conventions,
we denote the application of an artifact component a to a term (i.e., constant or
variable) v also as a[v] (standard notation for arrays), instead of a(v).

To introduce U-RASs, we discuss the kind of formulae we use. In such formulae,
we use notations like φ(z, b) to mean that φ is a formula whose free individual
variables are among the z and whose free unary function variables are among the b.

Let (x, a) be an artifact setting over Σext , where x = x1, . . . , xn are the artifact
variables and a = a1, . . . , am are the artifact components (their source and target
sorts are left implicitly specified). We list the kind of formulae we shall use:
• An initial formula is a formula ι(x, a) of the form

(∧ni=1 xi = ci) ∧ (∧mj=1 aj = λy.dj) (3.5)

where ci, dj are constants from Σ (typically, ci and dj are undef). Recall that
aj = λy.dj abbreviates ∀y aj(y) = dj.
• A state formula has the form

∃e φ(e, x, a) (3.6)

where φ is quantifier-free and the e are individual variables of artifact sorts.
• A transition formula tr has the form

∃e
(
γ(e, x, a) ∧ (∀k γu(k, e, x, a)) ∧ ∧i x′i = Fi(e, x, a)

∧ ∧j a′j = λy.Gj(y, e, x, a)

)
(3.7)

where the e are individual variables (of both basic and artifact sorts), k are
individual variables of artifact sort, γ (the ‘(plain) guard’) and γu (the ‘universal
guard’) are quantifier-free, x′, a′ are renamed copies of x, a, and the Fi, Gj (the
‘updates’) are case-defined functions. Sometimes, when we need to explicitly
distinguish variables of basic sorts from variables of artifact sort, we will use the
following equivalent but slightly different notation:

∃e, d
(
γ(e, d, x, a) ∧ (∀k γu(k, e, d, x, a)) ∧ ∧i x′i = Fi(e, d, x, a)

∧ ∧j a′j = λy.Gj(y, e, d, x, a)

)
(3.8)

where everything is as before, apart from e that are individual variables of artifact
sorts and d that are individual variables of basic sorts.
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As discussed in Subsection 1.3.1 and noticed also for SASs, the existentially
quantified “data” variables d (i.e., of basic sort) that appear in transitions are a
distinctive and essential feature of Artifact Systems: they are crucial to express
existential queries over the DB schema, to retrieve data elements from it and also
to represent (non-deterministic) external user inputs.
Note that transition formulae as above can express, e.g., (i) insertion (with-

/without duplicates) of a tuple in an artifact relation, (ii) removal of a tuple from
an artifact relation, (iii) transfer of a tuple from an artifact relation to artifact
variables (and vice-versa), and (iv) removal/modification of all the tuples satisfying
a certain condition from an artifact relation. All the above operations can also be
constrained. The formalization of the above operations in the formalism of our
transitions is not difficult: some of these operations are described in more details
in Section 5.3, where a comparison with the transitions of [DLV16; LDV17] is also
presented. Moreover, in that section a proper discussion on the conditions to impose
to the format of transition formulae tr and which operations are allowed in order to
guarantee the decidability of our verification machinery is extensively carried out.

We now give the most important definition of this thesis: the definition of
Universal Relational Artifact System, i.e. the most general model of DAPs that we
employ in this work. Every other formalism introduced in the course of this thesis
is an instance or can be translated into Universal Relational Artifact SystemS.

Definition 3.2.2 (U-RAS). A Universal Relational Artifact System (Universal
RAS, or, simply, U-RAS) has the form

S = 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉

where: (i) 〈Σ, T 〉 is a DB schema, (ii) Σext is an artifact extension of Σ, (iii) (x, a)
is an artifact setting over Σext , (iv) ι is an initial formula, and (v) τ is a disjunction
of transition formulae tr of the type (3.7).

A formula tr of the kind (3.7) is a single transition formula, where τ from
Definition 3.2.2 is a disjunction of formulae of the kind (3.7); hence, such τ

symbolically represents the union of all the possible transitions of the system.
We will omit the dependence of ι (and τ) from x, a (and x, a, x′, a′, respectively)
when clear from the context.

In U-RASs, the DB schema 〈Σ, T 〉 is intended to formalize the read-only database.
The working memory, formalized by the artifact setting (x, a) and containing both
artifact variables and artifact relations, interacts with the read-only database via
the transitions τ . As noticed in Subsection 3.1.1, the DB schema 〈Σ, T 〉 can be
substituted with a generic DB extended-schema 〈Σ ∪ Σ′, T ∪ T ′〉 , for example
with T ′ := LRA (linear real arithmetic).

U-RASs are difficult to manage, not only because of the presence of artifact
relations, but especially because their transitions contain universally quantified
guards (i.e., universal guards). However, in most practical cases universal guards
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Figure 3.3: On the left: characteristic graph of the human resources DB signature from
Example 3.2.6, augmented with the signature of the artifact extension for the job hiring
process; value sorts are shown in pink, basic id sorts in blue, and artifact id sorts in yellow.
On the right: relational view of the DB signature and the corresponding artifact relations;
each cell denotes an attribute with its type, underlined attributes denote primary keys,
and directed edges capture foreign keys.

are not needed, and it is convenient to define a slightly weaker version of U-
RAS that does not use universal guards. This version of U-RASs are called
Relational Artifact Systems (RASs).

Definition 3.2.3 (RAS). A Relational Artifact System (RAS) has the form

S = 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉

where: (i) 〈Σ, T 〉 is a DB schema, (ii) Σext is an artifact extension of Σ, (iii) (x, a) is
an artifact setting over Σext , (iv) ι is an initial formula, and (v) τ is a disjunction of
transition formulae tr of the type (3.7) where γu is substituted with the tautological
formula >.

As it is clear from the definition, RASs are a special case of U-RASs; SASs
are a particular class of RASs where the working memory consists only of artifact
variables (without artifact relations).

Example 3.2.6

We continue our running example, presenting a RAS Shr capturing a job hiring
process where multiple job categories may be turned into actual job offers, each
one receiving many applications from registered users. Such applications are
then evaluated, finally deciding which are accepted and which are rejected.
The example is inspired by the job hiring process presented in [Sil11] to show
the intrinsic difficulties of capturing real-life processes with many-to-many
interacting business entities using conventional process modeling notations (such
as BPMN). Note that this example is also demonstrating the co-evolution of
multiple instances of two different artifacts (namely, job offer and application).
At the end of this paragraph, we will add an additional (final) transition
containing a universal guard so as to transform Shr into a Universal RAS.

As for the read-only DB, Shr works over the DB schema of Example 3.1.3,
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extended with a further value sort Score used to score the applications sent
for job offerings. Score contains 102 different values, intuitively corresponding
to the integer numbers from −1 to 100 (included), where −1 denotes that the
application is considered to be not eligible, while a score between 0 and 100
indicates the actual score assigned after evaluating the application. For the
sake of readability, we make use of the usual integer comparison predicates to
compare variables of type Score. This is simply syntactic sugar and does not
require the introduction of rigid predicates in our framework. In fact, given two
variables x and y of type Score, x < y is a shortcut for the finitary disjunction
testing that x is one of the scores that are “less than” y (similarly for the other
comparison predicates).

As for the working memory, Shr consists of three artifacts: a single-instance
job hiring artifact tracking the three main phases of the overall process, and
two multi-instance artifacts accounting for the evolution of job offers, and that
of corresponding user applications. The job hiring artifact simply requires a
dedicated pState variable to store the current process state. The job offer and
user application multi-instance artifacts are instead modeled by enriching the
DB signature Σhr of the read-only database of human resources. In particular,
an artifact extension is added containing two artifact sorts joIndex and appIndex
used to respectively index (i.e., “internally” identify) job offers and applications.
The management of job offers and applications is then modeled by a full-fledged
artifact setting that adopts:

• artifact components with domains joIndex and appIndex to capture the
artifact relations storing multiple instances of job offers and applications;

• individual variables used as temporary memory to manipulate the artifact
relations.

The actual components of such an artifact setting will be introduced when
needed.

We now describe how the process works, step by step. When writing
transition formulae, we make the following assumption: if an artifact variable/-
component is not mentioned at all, it is meant that it is updated identically;
otherwise, the relevant update function will specify how it is updated. Notice
that, as mentioned also in the introduction, nondeterministic updates can be
formalized using existentially quantified variables in the transition.

Initially, hiring is disabled, which is captured by initially setting the pState
variable to undef. A transition of the process from disabled to enabled may
occur provided that the read-only HR DB contains at least one registered user
(who, in turn, may decide to apply for job offers created during this phase).
Technically, we introduce a dedicated artifact variable uId initialized to undef,
and used to load the identifier of such a registered user, if (s)he exists. The
enablement task is then captured by the following transition formula:

∃y : UserId
(
pState = undef ∧ y 6= undef ∧ pState′ = enabled ∧ uId ′ = y

)
We now focus on the creation of a job offer. When the overall hiring process is
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enabled, some job categories present in the read-only DB may be published into
a corresponding job offer, consequently becoming ready to receive applications.
This is done in two steps. In the first step, we transfer the id of the job category
to be published to the artifact variable jId, and the string representing the
publishing date to the artifact variable pubDate. Thus, jId is filled with the
identifier of a job category picked from JobCatId (modeling a nondeterministic
choice of category), while pubDate is filled with a String (modeling a user input
where one of the infinitely many strings is injected into pubDate).

In addition, the transition interacts with a further artifact variable pubState
capturing the publishing state of offers, and consequently used to synchronize
the two steps for publishing a job offer. In particular, this first step can be
executed only if pubState is not in state publishing, and has the effect of
setting it to such a value, thus preventing the first step to be executed twice in a
row (which would actually overwrite what has been stored in jId and pubDate).
Technically, we have:

∃j:JobCatId, d:String

pState = enabled ∧ pubState 6= publishing ∧ j 6= undef
∧ pState′ = enabled ∧ pubState′ = publishing
∧ jId ′ = j ∧ pubDate′ = d


The second step consists in transferring the content of these three variables into
corresponding artifact components that keep track of all active job offers, at
the same time resetting the content of the artifact variables to undef. This is
done by introducing three function variables with domain joIndex, respectively
keeping track of the category, publishing date, and state of job offers:

joCat : joIndex −→ JobCatId
joPDate : joIndex −→ String
joState : joIndex −→ String

With these artifact components at hand, the second step is then realized as
follows:

∃i:joIndex

pState = enabled ∧ pubState = publishing ∧ joPDate[i] = undef
∧ joCat[i] = undef ∧ joState[i] = undef
∧ aState′ = undef ∧ pState′ = enabled ∧ pubState′ = published

∧ joCat′ = λj.

if j = i then jId
else if joCat[j] = jId then undef

else joCat[j]


∧ joPDate′ = λj.

if j = i then pubDate
else if joCat[j] = jId then undef

else joPDate[j]


∧ joState′ = λj.

if j = i then open
else if joCat[j] = jId then undef

else joState[j]


∧ uId ′ = undef ∧ eId ′ = undef ∧ jId ′ = undef
∧ pubDate′ = undef ∧ cId ′ = undef


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The “if-then-else” pattern is used to create an entry for the job offer artifact
relation containing the information stored into the artifact variables populated
in the first step, at the same time making sure that only one entry exists for a
given job category. This is done by picking a job offer index i that is not already
pointing to an actual job offer, i.e., such that the i-th element of joCat is undef.
Then, the transition updates the whole content of the three artifact components
joCat, joPDate, and joState as follows:
• The i-th entry of such variables is respectively assigned to the job category
stored in JobCatId, the string stored in pubDate, and the constant open
(signifying that this entry is ready to receive applications).
• All other entries are kept unaltered, with the exception of a possibly existing

entry j with j 6= i that points to the same job category contained in JobCatId.
If such an entry j exists, its content is reset, by assigning to the j-th component
of all three artifact components the value undef. Obviously, other strategies
to resolve this possible conflict can be seamlessly captured in our framework.

A similar conflict resolution strategy will be used in the other transitions of this
example.

We now focus on the evolution of applications to job offers. Each application
consists of a job category, the identifier of the applicant user, the identifier of an
employee from human resources who is responsible for the application, the score
assigned to the application, and the application final result (indicating whether
the application is among the winners or the losers for the job offer). These five
information types are encapsulated into five dedicated function variables with
domain appIndex, collectively realizing the application artifact relation:

appJobCat : appIndex −→ JobCatId
applicant : appIndex −→ UserId
appResp : appIndex −→ EmpId
appScore : appIndex −→ Score
appResult : appIndex −→ String

With these function variables at hand, we discuss the insertion of an
application into the system for an open job offer. This is again managed
in multiple steps, first loading the necessary information into dedicated
artifact variables, and finally transferring them into the function variables
that collectively realize the application artifact relation. To synchronize these
multiple steps and define which step is applicable in a given state, we make use
of a string artifact variable called aState. The first step to insert an application
is executed when aState is undef, and has the effect of loading into jId the
identifier of a job category that has a corresponding open job offer, while at the
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same time putting aState in state joSelected.

∃i:joIndex
pState = enabled ∧ aState = undef ∧ joCat[i] 6= undef ∧ joState[i] = open
∧ pState′ = enabled ∧ aState′ = joSelected ∧ jId ′ = joCat[i]
∧ joCat ′ = joCat ∧ uId ′ = undef ∧ eId ′ = undef ∧ jId ′ = undef
∧ pubDate′ = undef ∧ cId ′ = undef


The last row of the transition resets the content of all artifact variables, cleaning
the working memory for the forthcoming steps (avoiding that stale values
are present there). This is also useful from the technical point of view, as it
guarantees that the transition is strongly local (this notion will be introduced
in Section 5.2.1; see also the discussion in Subsection 5.3.1).

The second step has a twofold purpose: picking the identifier of the user who
wants to submit an application for the selected job offer, and assigning to its
application an employee of human resources who is competent in the category
of the job offer. This also results in an update of variable aState:

∃u:UserId, e:EmpId, c:CompInIdpState = enabled ∧ aState = joSelected ∧ who(c) = e ∧ what(c) = jId
∧ jId 6= undef ∧ u 6= undef ∧ c 6= undef ∧ pState′ = enabled
∧ aState′ = received ∧ jId ′ = jId ∧ uId ′ = u ∧ eId ′ = e ∧ cId ′ = c


The last step transfers the application data into the application artifact

relation, making sure that no two applications exist for the same user and the
same job category. The transfer is done by assigning the artifact variables
to corresponding components of the application artifact relation, at the same
resetting all application-related artifact variables to undef (including aState, so
that new applications can be inserted). For the insertion, a “free” index (i.e.,
an index pointing to an undefined applicant, with an undefined job category
and an undefined responsible) is picked. The newly inserted application gets a
default score of -1 (thus initializing it to “not eligible”), while the final result
is undef:

∃i:appIndex

pState = enabled ∧ aState = received
∧ appJobCat[i] = undef ∧ applicant[i] = undef ∧ appResp[i] = undef
∧pState′ = enabled ∧ aState′ = undef

∧ appJobCat′ = λj.

(
if j = i then jId
else if (applicant[j] = uId ∧ appResp[j] = eId) then undef

else appJobCat[j]

)
∧ applicant′ = λj.

(
if j = i then uId
else if (applicant[j] = uId ∧ appResp[j] = eId) then undef

else applicant[j]

)
∧ appResp′ = λj.

(
if j = i then eId
else if (applicant[j] = uId ∧ appResp[j] = eId) then undef

else appResp[j]

)
∧ appScore′ = λj.

(
if j = i then -1
else if (applicant[j] = uId ∧ appResp[j] = eId) then undef

else appScore[j]

)
∧ appResult′ = λj.

(
if j = i ∨ (applicant[j] = uId ∧ appResp[j] = eId) then undef
else appResult[j]

)
∧ uId′ = undef ∧ eId′ = undef ∧ jId′ = undef ∧ pubDate′ = undef ∧ cId′ = undef





3. Array-Based Artifact Systems: General Framework 75

Each single application that is currently considered as not eligible can be
made eligible by carrying out an evaluation that assigns a proper score to it.
This is managed by the following transition:

∃i:appIndex, s:Score
(

pState = enabled ∧ applicant[i] 6= undef ∧ appScore[i] = -1
∧ s ≥ 0 ∧ pState′ = enabled ∧ appScore′[i] = s

)

Evaluations are only possible as long as the process is in the enabled state.
The process moves from enabled to final once the deadline for receiving
applications to job offers is actually reached. This event is captured with
pure nondeterminism, and has the additional bulk effect of turning all open job
offers to closed:

pState = enabled ∧ pState′ = final

∧ joState′ = λj.

(
if joState[j] = open then closed
else joState[j]

)

Finally, we consider the determination of winners and losers, which is carried
out when the overall hiring process moves from final to notified. This is captured
by the following bulk transition, which declares all applications with a score
above 80 as winning, and all the others as losing:

pState = final ∧ pState′ = notified

∧ appResult ′ = λj.

(
if appScore[j] > 80 then winner
else loser

)

So far, none of the transitions contain universal guards. Hence, the system
described above is a plain RAS. We now transform it into a Universal RAS
by adding a final transition containing a universal guard. This final transition
checks (using a universal guard) whether no winner can be determined since
all the applicants received a score below 80: if this is the case, the transition
changes that state of pState to no-winner.

pState = final ∧ ∀k (appScore[k] < 80) ∧ pState′ = no-winner
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In this chapter, we introduce the safety verification problem for SASs and
(Universal) RASs. In general, the safety problem accounts for establishing the
existence of an “unsafe trace”, i.e., a system run that, starting from the initial
configuration of the system, leads to an “unsafe” configuration violating a desired
property of interest that the system is supposed to satisfy. In the case it is impossible
for the system to reach such an unsafe configuration, the system is intuitively said
to be safe with respect to the unsafe configuration. Usually, the safety problem
is stated dually, in the terms of a reachability problem: the given property, called
unsafe formula, is expressed in a symbolic way and is intended to formalize the
undesired, unsafe states we would like to avoid. In this respect, the safety problem
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is about deciding if there exists a system run from an initial state that can reach one
of the states satisfying the unsafe formula. The array-based setting of our Artifact
Systems provides a natural formalism for expressing safety problems. We will make
these intuitions precise in the following, by defining the notions of unsafe formula,
symbolic unsafe trace and safety problem for both SASs and (Universal) RASs.

The main focus of this chapter is on the verification machinery we employ to
assess safety of our Artifact Systems. For both SASs and (Universal) RASs we make
use of a powerful and non-trivial extension of the backward reachability procedure
studied in the context of array-based systems [Ghi+08; GR10a]: this procedure was
presented there as a declarative version, based on SMT solving, of the standard
backward reachability procedure introduced by Abdullah et al. [Abd+96]. This
declarative version is not sufficient to attack the safety problem of our Artifact
Systems, because of the presence of “the database-driven setting”: transitions
contain queries over the read-only DB, and queries are existential formulae that can
retrieve “data” elements from the DB or the working memory through existentially
quantified variables. As explained in the introduction and as it will be clear in
the following, these variables need to be eliminated at every iteration of the main
loop of the backward reachability procedure, since their presence would break the
format of the allowed formulae, compromising correctness. The growth in the
number of existentially quantified variables would also affect the performance of
the backward search. This issue is solved by studying a suitable machinery for
eliminating these variables at each iteration of the main loop of the procedure.
This is achieved by exploiting the model-theoretic notion of model completion for
the DB theories used by Artifact Systems.

The chapter is organized as follows: in Section 4.1, we first state the model-
theoretic properties for DB schemas that are needed in order to make our machinery
work. Then, in Section 4.2 we define the safety problem for SASs and we provide
BReachSAS, i.e., our extended version of the SMT-based backward reachability
procedure for verifying SASs: we also prove some useful meta-properties (e.g.,
correctness) of BReachSAS. In Section 4.3 we introduce the safety problem for
Universal RASs and plain RASs, and we describe BReachRAS, i.e., our extended
version of the SMT-based backward reachability procedure for verifying plain RASs.
We then show how BReachRAS can be employed to (partially) verify Universal RASs
as well (Section 4.4). In Section 4.5, we prove some interesting meta-properties (like
correctness) of BReachRAS. In Section 4.6, we provide examples of DB schemas for
which the described machinery concretely works. Finally, we conclude by discussing
two important topics emerging from this chapter: the use of quantifier elimination in
model completions for model checking (Subsection 4.7.1) and the notion of freshness
supported by Universal RASs and in other approaches (Subsection 4.7.2).
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4.1 Model-theoretic Requirements of DB
Schemas

The theory T from Definition 3.1.1 must satisfy few crucial model-theoretic
requirements for our approach to work. In this section, we define such requirements:
we will see at the end of chapter that, even if these requirements seem too abstract,
they are matched in concrete and useful cases, e.g., when we are concerned with
an acyclic signature Σ and with key dependencies, i.e., the setting presented
in [LDV17]). Actually, acyclicity is a stronger requirement than needed, which,
however, simplifies our exposition.

Finite Model Property

We remark that a DB (extended)-theory T as a first-order theory has the strong
finite model property (for constraint satisfiability) iff every constraint φ that is
satisfiable in a model of T is satisfiable in a DB instance interpreting also the
value sorts into finite sets. This assumption is usually too strong, especially for
DB extended-schemas. That is why we introduce a slightly weaker version: a DB
(extended)-theory T has the finite model property (for constraint satisfiability) iff
every constraint φ is satisfiable in a (generic) DB instance (whose value sorts can
be infinite sets). It can be easily seen that, in case of DB schemas, the strong finite
model property is equivalent to the finite model property.

The Constraint Satisfiabilty Problem is decidable

We recall from the preliminaries that the constraint satisfiability problem for T
is to establish whether, for an existential formula ∃y φ(x, y) (with φ a constraint)
there exist a model M of T and an assignment α to the free variables x such
that M, α |= ∃y φ(x, y). The finite model property implies decidability of the
constraint satisfiability problem in case T is recursively axiomatized. Indeed, in
this case it is possible to enumerate unsatisfiable constraints via a logical calculus
and this enumeration can be interleaved with the enumeration of finite models,
thus supplying a full decision procedure.

Model Completion of DB theories.

A DB theory T does not necessarily have quantifier elimination; however, it is
often possible to strengthen T in a conservative way (with respect to constraint
satisfiability) and get quantifier elimination (cf. Proposition 2.4.1). In order to do
that, we require that the model completion T ∗ of T exists and effective algorithms
for eliminating quantifiers in T ∗ are available. We will show in the next sections that
model completions turn out to be successful to attack the verification of dynamic
systems operating over relational databases.
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4.1.1 Assumption for the Technical Machinery
Hereafter, we make the following assumption:

Assumption 4.1.1. The DB theories we consider have decidable constraint
satisfiability problem, finite model property, and admit a model completion (for
which an effective algorithm for quantifier elimination is available).

We disclose now (but we will discuss again on this at the end of the chapter,
arguing why it is true) that this assumption is matched, for instance, in the following
three cases: (i) when T is empty; (ii) when T is axiomatized by Axioms (3.1);
(iii) when Σ is acyclic and T is axiomatized by universal one-variable formulae
(such as Axioms (3.1)).

Hence, thanks in particular to case (ii), the artifact-centric model in the style
of [DLV16; LDV17] (see Section 3.1.2 for recalling the requirements over the read-only
database from their setting) that we intend to capture matches Assumption 4.1.1.
Moreover, in case we consider DB extended-schemas obtained by adding “free”
relations to the DB schemas of (i), (ii), (iii) above, or by combining them with
linear real arithmetic as T ′ (cf. Subsection 3.1.1), we still satisfy Assumption 4.1.1.

4.2 Parameterized Safety via Backward Reacha-
bility for SASs

An unsafe formula for a SAS S is a state formula υ(x) describing undesired states
of S. By adopting a customary terminology for array-based systems, we say that S
is safe with respect to υ if intuitively the system has no finite run leading from ι to
υ. Formally, there is no DB-instanceM of 〈Σ, T 〉, no k ≥ 0, and no assignment
in M to the variables x0, . . . , xk such that the formula

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (4.1)

is true inM (here xi’s are renamed copies of x). Formula (4.1) is sometimes called
symbolic unsafe trace. The safety problem for S w.r.t. to υ is the following: given
an unsafe formula υ decide whether S is safe with respect to υ. We sometimes call
safety problem (S, υ) the safety problem for S w.r.t. to υ.

Example 4.2.7

We provide an example of an unsafe formula for Example 3.2.5. Consider
the unsafe configuration where the process is enabled but the identifier of the
registered user loaded into uId is undef. Formally, this can be represented by
the following state formula:

pState = enabled ∧ uId = undef
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Algorithm 1: BReachSAS
Function BReach(υ)

1 φ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is T -satisfiable do
3 if ι ∧ φ is T -satisfiable then

return (UNSAFE, unsafe trace witness)
4 B ←− φ ∨B;
5 φ←− Pre(τ, φ);
6 φ←− QESAS(T ∗, φ);

return SAFE;

Notice that the following formula

∃y (pState = enabled ∧ y 6= undef ∧ uId = y)

is not an unsafe formula, because of the existential quantified data variable y,
but it is equivalent to

pState = enabled ∧ uId 6= undef

which is an unsafe formula. We will see in Lemma 4.5.2 that this equivalence
(in some sense) holds in the general case of RASs (which SASs are a specific
case of).

Algorithm 1 shows the modified/extended version of the SMT-based backward
reachability procedure BReachSAS (sometimes called backward reachability or back-
ward search in the following when clear from the context) for handling the safety
problem for a SAS S (the original version of the SMT-based backward reachability
procedure can be found in [Ghi+08; GR10a]) . An integral part of the algorithm is
to compute symbolic preimages (Line 5). The intuition behind the algorithm is to
execute a loop (sometimes called main loop or while loop of the procedure) where,
starting from the undesired states of the system (described by the unsafe formula
ν(x)), the state space of the system is explored backward: in every iteration of the
while loop (Line 2), the current set of states is regressed through transitions thanks
to the preimage computation. For that purpose, for any τ(z, z′) and φ(z) (where z′
are renamed copies of z), we define Pre(τ, φ) as the formula ∃z′(τ(z, z′)∧φ(z′)). Let
φ(x) be a state formula, describing the state of the artifact variables x. The preimage
of the set of states described by the formula φ(x) is the set of states described
by Pre(τ, φ) (notice that, when τ = ∨

i tri, then Pre(τ, φ) = ∨
i Pre(tri, φ)). We

recall that a state formula for a SAS is a quantifier-free Σ-formula (cf. Chapter 3).
Unfortunately, because of the presence of the existentially quantified variables y
in τ , Pre(τ, φ) is not a state formula, in general. If the quantified variables were
not eliminated, we would break the regressability of the procedure: indeed, the
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states reached by computing preimages, intuitively described by Pre(τ, φ), need
to be represented by a state formula φ′ in the new iteration of the while loop. In
addition, the increase of the number of variables due to the iteration of the preimage
computation would affect the performance of the satisfiability tests described below,
in case the loop is executed many times. In order to solve these issues, it is essential
to introduce the subprocedure QESAS(T ∗, φ) in Line 6.

The main modification of the original SMT-based backward reachability
procedure lies exactly in the new subprocedure QESAS(T ∗, φ) in Line 6 for computing
quantifier elimination in the model completion T ∗.

QESAS(T ∗, φ) in Line 6 is a subprocedure that implements the quantifier
elimination algorithm of T ∗ and that converts the preimage Pre(τ, φ) of a state
formula φ into a state formula (equivalent to it modulo the axioms of T ∗), so as
to guarantee the regressability of the procedure: this conversion is possible since
T ∗ eliminates from tr the existentially quantified variables y. Backward search
computes iterated preimages of the unsafe formula υ, until a fixpoint is reached (in
that case, the SAS S is safe w.r.t. υ) or until a set intersecting the initial states (i.e.,
satisfying ι) is found (in that case, the SAS S is unsafe w.r.t. υ). Inclusion (Line 2)
and disjointness (Line 3) tests can be discharged via proof obligations to be handled
by SMT solvers. The fixpoint is reached when the test in Line 2 returns unsat: the
preimage of the set of the current states is included in the set of states reached by
the backward search so far (represented as the iterated application of preimages to
the unsafe formula υ). The test at Line 3 is satisfiable when the states visited so
far by the backward search includes a possible initial state (i.e., a state satisfying
ι). If this is the case, then S is unsafe w.r.t. υ. Together with the unsafe outcome,
the algorithm also returns an unsafe trace of the form (4.1), explicitly witnessing
the sequence of transitions tri that, starting from the initial configurations, lead
the system to a set of states satisfying the undesired conditions described by υ(x).

The procedure either does not terminate or returns a SAFE/UNSAFE result.
Given a SAS S and an unsafe formula υ, a SAFE (resp. UNSAFE) result is

correct iff S is safe (resp. unsafe) w.r.t. υ.
We define some meta-properties for SASs.

Definition 4.2.1. Given a SAS S and an unsafe formula υ, a verification procedure
for checking unsafety of S w.r.t. υ is: (i) sound if, when it terminates, it returns a
correct result; (ii) complete if, whenever UNSAFE is the correct result, then UNSAFE
is indeed returned.

Remark 4.2.1. The nomenclature used in the previous definition is non-standard
in the verification literature, but we prefer to use it because, for the purpose of this
work, it makes the presentation of the main results clearer and consistent.

In the following, effectiveness means that means that all subprocedures in the
algorithm can be effectively executed.

We state now the main result of this section:
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Theorem 4.2.1. Let 〈Σ, T 〉 be a DB schema. Then, for every SAS S =
〈Σ, T, x, ι, τ〉, backward search BReachSAS is effective and sound for checking
unsafety of S wrt an unsafe formula υ.

Proof. First of all, we show that, instead of considering satisfiability of formulae of
the form (4.1) in models of T , we can concentrate on T ∗-satisfiability. We recall
formula (4.1):

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) .

By definition, S is unsafe iff for some k, the formula (4.1) is satisfiable in a DB-
instance of 〈Σ, T 〉. Thanks to Assumption 4.1.1, T has the finite model property
and consequently, as (4.1) is an existential Σ-formula, S is unsafe iff for some k,
formula (4.1) is satisfiable in a model of T ; furthermore, again by Assumption 4.1.1,
T admits a model completion T ∗. Hence, since the formulae of the form (4.1) are
existential Σ-formulae, and by using the property that every model of a theory
T embeds into a model of its model completion T ∗, we conclude that S is unsafe
iff for some k, formula (4.1) is satisfiable in a model of T ∗. Thus, for establishing
(un)safety of S, we can concentrate on satisfiability of formulae of the form (4.1) in
models of T ∗.

Now, we want to show the correctness of the results returned by Algorithm 1,
i.e. that backward search is sound.

First, we preliminarily give some useful remarks on the algorithm. Let us call
Bn (resp. φn), with n ≥ 0, the status of the variable B (resp. φ) after n executions
in Line 4 (resp. Line 6) of Algorithm 1 (n = 0 corresponds to the status of the
variables in Line 1). We have that

T ∗ |= φj+1 ↔ Pre(τ, φj) (4.2)

for all j and that
T |= Bn ↔

∨
0≤j<n

φj (4.3)

is an invariant of the algorithm.
We now show that if the procedure returns an UNSAFE outcome, this outcome is

correct, i.e., S is really unsafe. Since we are considering satisfiability in models of T ∗,
we can apply quantifier elimination of T ∗: it can be easily seen that the satisfiability
of the quantifier-free formula we get in this way is equivalent to the satisfiability
of ι ∧ φn: clearly, this is again a quantifier-free formula (because of Line 6 of
Algorithm 1). Since T -satisfiability and T ∗-satisfiability are equivalent (by definition
of model completion) when dealing with existential (and in particular, quantifier-
free) formulae, the T -satisfiability of ι∧ φn is decidable thanks to Assumption 4.1.1.
Hence, if Algorithm 1 terminates with an UNSAFE outcome, then there exists a
formula of the form (4.1) that is T ∗-satisfiable. This exactly means that S is unsafe,
as wanted.

We now show that if the algorithm returns a SAFE outcome, this outcome is
correct, i.e., S is really safe.
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Now consider the satisfiability test in Line 2. This is again a satisfiability test
for a quantifier-free formula, thus it is decidable. In case of a SAFE outcome, we
have that T |= φn → Bn; we claim that, if we continued executing the loop of
Algorithm 1, we would nevertheless get that:

T ∗ |= Bm ↔ Bn (4.4)

for all m ≥ n. We justify Claim (4.4) below.
From T |= φn → Bn, taking into consideration that T ∗ ⊇ T and that

Formula (4.2) holds, we get T ∗ |= φn+1 → Pre(τ, Bn). Since Pre commutes
with disjunctions (i.e., Pre(τ,∨j φj) is logically equivalent to ∨j Pre(τ, φj)), we also
have T ∗ |= Pre(τ, Bn) ↔ ∨

1≤j≤n φj by the Invariant (4.3) and by Formula (4.2)
again. By using the entailment T |= φn → Bn once more, we get T ∗ |= φn+1 → Bn

and also that T ∗ |= Bn+1 ↔ Bn, thus we finally obtain that T ∗ |= φn+1 → Bn+1.
Since φn+1 → Bn+1 is quantifier-free, T ∗ |= φn+1 → Bn+1 implies T |= φn+1 → Bn+1.
This argument can be repeated for all m ≥ n, obtaining that T ∗ |= Bm ↔ Bn for
all m ≥ n, i.e. Claim (4.4).

This would entail that ι ∧ φm is always unsatisfiable (because of (4.3) and
because ι ∧ φj was unsatisfiable for all j < n), which is the same (as remarked
above) as saying that all formulae (4.1) are unsatisfiable. Thus S is safe.

Remark 4.2.2. The main idea behind the proof of the previous theorem is that
existential formulae are satisfiable in a model of T iff so are they in a model of
T ∗: thus, if an unsafe trace exists, it can be lifted to a model of T ∗, so that the
subprocedure QESAS(T ∗, φ) in Line 6 does not introduce over-approximations and
consequently no spurious trace can be produced during the search performed by
the procedure.

Backward search for SASs is not guaranteed to terminate. Indeed, the proof of
Theorem 4.2.1 does not provide a termination argument in general. This is typical
of generic array-based systems: in general, backward search is not guaranteed to
terminate [GR10a]. However, in case S is unsafe w.r.t. ν(x), an unsafe trace—which
is finite—is found after finitely many iterations of the while loop: hence, in the
unsafe case, backward search must terminate. Together with the theorem above,
this means that the backward reachability procedure is at least a semi-decision
procedure for detecting unsafety of SASs. In fact, we have the following corollary:

Corollary 4.2.2. BReachSAS (Algorithm 1) is effective, sound and complete for
checking unsafety of the SAS S w.r.t. υ(x).

This corollary shows that backward search is a semi-decision procedure: if the
system is unsafe, backward search always terminates and discovers it; if the system
is safe, the procedure can diverge (but it is still correct). We will see in the next
chapter that when an additional condition on the DB signature Σ is imposed (i.e.,
acyclicity), backward search is guaranteed to terminate and becomes a full decision
procedure, for which we will also provide a complexity upper bound.
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Remark 4.2.3. We remark that Theorem 4.2.1 holds also for DB extended-schemas
(for example, adding “free relations” to the DB signatures). Moreover, notice that
it can be shown that every existential formula ϕ(x, x′) can be turned into the form
of Formula (3.4). We underline that the proof of Theorem 4.2.1 requires that the
considered background theory T : (i) admits a model completion; (ii) is universal;
and (iii) enjoys decidability of constraint satisfiability. Conditions (ii) and (iii)
imply that one can decide whether a finite structure is a model of T . If (ii) holds,
it is well-known that (i) implies amalgamation [CK90]. Notice also that (ii) is
equivalent to the fact that T is closed under substructures (this is a standard
preservation theorem in model theory [CK90]).

In our first-order setting, we can perform verification in a purely symbolic way,
by using (semi-)decision procedures provided by SMT solvers, even when local
finiteness fails. As mentioned before, local finiteness is guaranteed in the relational
context, but it does not hold anymore when arithmetic operations are introduced.
Note that the theory of a single uninterpreted binary relation (i.e., the theory of
directed graphs) has a model completion, whereas it can be easily seen that the
theory of one binary relation which is a partial function does not (since it is not
amalgamable). If primary key dependencies are formalized using partial functions,
model completability is compromized. So, the second distinctive feature of our
setting naturally follows from this observation: thanks to our many-sorted functional
representation of DB schemas (with keys), the amalgamation property, required
by Theorem 4.2.1, holds, witnessing that our framework remains well-behaved
even in the presence of key dependencies.

4.3 Parameterized Safety via Backward Reacha-
bility for U-RASs and RASs

As for SAS, an unsafe formula for a U-RAS S is a state formula υ(x, a). We say
that S is safe with respect to υ if there is no DB-instanceM of 〈Σext , T 〉, no k ≥ 0,
and no assignment inM to the variables x0, a0 . . . , xk, ak such that the formula

ι(x0, a0) ∧ τ(x0, a0, x1, a1)
∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak) (4.5)

is true inM (here xi, ai are renamed copies of x, a). Formula (4.5) is sometimes
called symbolic unsafe trace. The safety problem is defined as for SAS.

Example 4.3.8

We consider a safety property for the RAS from Example 5.2.9 that checks
whether, after having received the evaluation notification, there are no applicants
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Algorithm 2: BReachRAS
Function BReach(υ)

1 φ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is T -satisfiable do
3 if ι ∧ φ is T -satisfiable then

return (UNSAFE, unsafe trace witness)
4 B ←− φ ∨B;
5 φ←− Pre(τ, φ);
6 φ←− QERAS(T ∗, φ);

return SAFE;

left without winner or loser status being assigned:

∃i:appIndex(
pState = notified ∧ applicant[i] 6= undef
∧ appResult[i] 6= winner ∧ appResult[i] 6= loser

)

The job hiring RAS Shr turns out to be safe with respect to this property
(cf. Section 9.5). /

We now discuss how to automatically verify (un)safety of U-RASs and RASs.
We will use again a suitable SMT-based version of backward search. Unfortunately,
we will see that this version can be proved to be fully sound only on RASs, while
for U-RASs we will need to preprocess them by transforming them into plain
RASs. The final result of this preprocessing is that backward search can be still
used to verify (un)safety of U-RASs, but only the SAFE outcome is guaranteed
to be always correct. Since for both RASs and U-RASs we employ backward
search, we now present the procedure.

The interesting point is that, as already remarked, we can still run a modified
version of the SMT-based backward search for handling safety problems in RASs,
and for partially handling safety problems in U-RASs as well. We call this version
for RASs BReachRAS (Algorithm 2). In fact, Algorithm 2 presents the same
structure as Algorithm 1. Notice that in this case the definition of Pre(τ, φ) gives
us ∃x′∃a′(τ(x, a, x′, a′) ∧ φ(x′, a′)). The subprocedure QERAS(T ∗, φ) mentioned in
Line 6 is extended so as to convert the preimage Pre(τ, φ) of a state formula
φ into a state formula (equivalent to it modulo the axioms of T ∗), witnessing
its regressability: this is possible since T ∗ eliminates from primitive formulae
the existentially quantified variables over the basic sorts, whereas elimination of
quantified variables over artifact sorts is not possible, because these variables occur
as arguments of artifact components (see Lemma 4.5.1 and Lemma 4.5.2 below for
details). In addition, the satisfiability tests from Lines 2–3 can still be discharged
(in fact, we prove in Lemma 4.5.3 below that the entailment between state formulae
can be decided via instantiation techniques).
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Similarly to the case of BReachSAS, the procedure BReachRAS either does not
terminate or returns a SAFE/UNSAFE result.

Given a U-RAS S and an unsafe formula υ, a SAFE (resp. UNSAFE) result
is correct iff S is safe (resp. unsafe) w.r.t. υ. We define some meta-properties
for U-RASs, similarly to what done for SASs.

Definition 4.3.1. Given a U-RAS S and an unsafe formula υ, a verification
procedure for checking unsafety of S w.r.t. υ is: (i) sound if, when it terminates,
it returns a correct result; (ii) partially sound if a SAFE result is always correct;
(iii) complete if, whenever UNSAFE is the correct result, then UNSAFE is indeed
returned.

Again, effectiveness means that means that all subprocedures in the algorithm
can be effectively executed.

The following theorem is about the most general model of U-RASs, and states
that BReachRAS can be used only partially to check unsafety of U-RASs.

Theorem 4.3.1. BReachRAS is partially sound for checking unsafety of an Universal
RAS S w.r.t. an unsafe formula υ.

In analogy to Theorem 4.2.1, we obtain for plain RASs the following theorem:

Theorem 4.3.2. Let 〈Σ, T 〉 be a DB schema. Then, for every RAS S =
〈Σ, T,Σext , x, a, ι, τ〉, backward search BReachRAS (cf. Algorithm 2) is effective
and sound for checking unsafety of S wrt an unsafe formula υ.

The proof of Theorem 4.3.2 is the content of Section 4.5.
We prove Theorem 4.3.1 in two steps:
1. first, we show in Section 4.4 a syntactic transformation from U-RASs to RASs;

we also prove that if the transformed RAS is safe wrt an unsafe formula υ,
then the original U-RAS is safe wrt υ as well (in the transformed RAS there
can be more unsafe traces than in the original U-RAS, but not less).

2. second, we conclude by using soundness of BReachRAS for checking safety of
RASs (Theorem 4.3.2).

Similarly to SASs, backward search for RASs is not guaranteed to terminate.
Indeed, the proof of Theorem 4.3.2 does not provide a termination argument in
general. However, in case the RAS S is unsafe w.r.t. υ, an unsafe trace—which
is finite—is found after finitely many iterations of the while loop: hence, in the
unsafe case, backward search must terminate. Since in the transformation from
U-RASs to RASs unsafe traces are preserved, the previous arguments holds also for
U-RASs. Together with Theorem 4.3.2, this means that the backward reachability
procedure is at least a semi-decision procedure for detecting unsafety of RASs. We
will provide some termination results for BReachRAS in the next chapter.

We summarize all the results of this section in the following corollary:
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Corollary 4.3.3. BReachRAS (Algorithm 2) is effective, sound and complete for
checking unsafety of any RAS S w.r.t. any unsafe formula υ, and is effective,
partially sound and complete for checking unsafety of any U-RAS S ′ w.r.t. any
unsafe formula υ′.

4.4 Eliminating Universal Quantifiers from U-
RASs

Table 4.1: Definitions of the mapping (̃·)

Original uni-
versal RAS
S and unsafe
formula υ

(a) Σ, T,Σext
(b) x = x1, ..., xn a = a1, ..., am
(c) υ(x, a) := ∃e φ(e, x, a)
(d) ι(x, a) := (

∧n
i=1 xi = ci) ∧ (

∧m
j=1 aj = λy.dj)

(e)

tr`(x, a, x′, a′) := ∃e, d

 γ(e, d, x, a) ∧ ∀k γu(k, e, d, x, a)
∧
∧
i x
′
i = Fi(e, d, x, a)

∧
∧
j a
′
j = λy.Gj(y, e, d, x, a)


where H(y, e, d, x, a) := case of {

κH1 (y, e, d, x, a) : tH1 (y, e, d, x, a)
· · ·

κHs (y, e, d, x, a) : tHs (y, e, d, x, a) }
with H ∈ {Fi, Gj}

(f) τ(x, a, x′, a′) :=
∨r
`=1 tr`(a, a′)

7−→ (̃·)

Intermediate
Universal
RAS S̃
and unsafe
formula υ̃

(a) Σ̃srt := Σsrt ∪ { ˜Elem}, Σ̃fun := Σfun ∪ {t, f}, T̃ := T ∪ {t 6= f}, Σ̃ext := Σext
(b) x̃ := x, ã := a, am+1 where am+1 is new

for e := e1, ..., ek, the notation A(i) abbreviates
∧k
`=1(am+1[e`] = t)

(c) υ̃(x̃, ã) := ∃e (A(e) ∧ φ(e, x, a))
(d) ι̃(x̃, ã) := (

∧n
i=1 xi = ci) ∧ ∀e (A(e)⇒ (

∧m
j=1 aj [e] = dj))

(e)

t̃r`(x̃, ã, x̃′, ã′) := ∃e, d


A(e) ∧ γ(e, d, x, a)∧
∧∀k (A(k)⇒ γu(k, e, d, x, a))∧
∧
∧
i x
′
i = F A

i (e, d, x, a)∧
∧
∧
j a
′
j = λy.GA

j (y, e, d, x, a, am+1[y])
∧a′m+1 = am+1


where F A

i (e, d, x, a) := Fi(e, d, x, a)
and GA

j (y, e, d, x, a, β) := case of {
κ
Gj

1 (y, e, d, x, a) ∧ β = t : t
Gj

1 (y, e, d, x, a)
· · ·

κ
Gj
s (y, e, d, x, a) ∧ β = t : t

Gj
s (y, e, d, x, a)

β = f : aj [y] }
(e′) t̃rr+1(x̃, ã, x̃′, ã′) := ∃e (A(e) ∧ x′ = x ∧ a′ = a ∧ a′m+1 = upd(am+1, e, f))
(f) τ̃(x̃, ã, x̃′, ã′) :=

∨r+1
`=1 t̃r`(x̃, ã, x̃′, ã′)
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Table 4.2: Definitions of the mapping (̂·)

Intermediate
universal
RAS S̃
and unsafe
formula υ̃

(a) Σ̃srt := Σsrt ∪ { ˜Elem}, Σ̃fun := Σfun ∪ {t, f}, T̃ := T ∪ {t 6= f}, Σ̃ext := Σext
(b) x̃ := x, ã := a, am+1 where am+1 is new

for e := e1, ..., ek, the notation A(i) abbreviates
∧k
`=1(am+1[e`] = t)

(c) υ̃(x̃, ã) := ∃e (A(e) ∧ φ(e, x, a))
(d) ι̃(x̃, ã) := (

∧n
i=1 xi = ci) ∧ ∀e (A(e)⇒ (

∧m
j=1 aj [e] = dj))

(e)

t̃r`(x̃, ã, x̃′, ã′) := ∃e, d


A(e) ∧ γ(e, d, x, a)∧
∧∀k (A(k)⇒ γu(k, e, d, x, a))∧
∧
∧
i x
′
i = F A

i (e, d, x, a)∧
∧
∧
j a
′
j = λy.GA

j (y, e, d, x, a, am+1[y])
∧a′m+1 = am+1


where F A

i (e, d, x, a) := Fi(e, d, x, a)
and GA

j (y, e, d, x, a, β) := case of {
κ
Gj

1 (y, e, d, x, a) ∧ β = t : t
Gj

1 (y, e, d, x, a)
· · ·

κ
Gj
s (y, e, d, x, a) ∧ β = t : t

Gj
s (y, e, d, x, a)

β = f : aj [y] }
(e′) t̃rr+1(x̃, ã, x̃′, ã′) := ∃e (A(e) ∧ x′ = x ∧ a′ = a ∧ a′m+1 = upd(am+1, e, f))
(f) τ̃(x̃, ã, x̃′, ã′) :=

∨r+1
`=1 t̃r`(x̃, ã, x̃′, ã′)

7−→ (̂·)

Target
(plain) RAS
Ŝ and unsafe
formula υ̂

(a) Σ̂ := Σ̃, T̂ := T̃ and Σ̂ext := Σ̃ext
(b) x̂ := x̃, â := ã
(c) υ̂(x̂, â) := υ̃(x̃, ã)
(d) ι̂(x̂, â) := ι̃(x̃, ã)

(e)

t̂r`(x̂, â, x̂′, â′) := ∃e, d


A(e) ∧ γ(e, d, x, a)∧
∧
∧
k∈e γu(k, e, d, x, a)

∧
∧
i x
′
i = F A,∀

i (e, d, x, a)∧
∧
∧
j a
′
j = λy.GA,∀

j (y, e, d, x, a, am+1[y])
∧a′m+1 = λy.fA,∀(y, e, d, x, a, am+1[y])


where F A,∀

i (e, d, x, a) := Fi(e, d, x, a)
and GA,∀

j (y, e, d, x, a, β) := case of {
κ
Gj

1 (y, e, d, x, a) ∧ β = t ∧ γu(y, e, d, x, a) : t
Gj

1 (y, e, d, x, a)
· · ·

κ
Gj
s (y, e, d, x, a) ∧ β = t ∧ γu(y, e, d, x, a) : t

Gj
s (y, e, d, x, a)

β = f ∨ ¬γu(y, e, d, x, a) : aj [y] }
and fA,∀(y, e, d, x, a, β) := if (β = f ∨ ¬γu(y, e, d, x, a)) then f else β

(e′) t̂rr+1(x̂, â, x̂′, â′) := t̃rr+1(x̂, â, x̂′, â′)
(f) τ̂(x̂, â, x̂′, â′) :=

∨r+1
`=1 t̂r`(x̂, â, x̂′, â′)
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In general, it is difficult to automate BReach for proper Universal RASs, i.e.
when the transition formulae tr contain a universal guard γu (cf. Formula (3.7)).
The main problem is that, in order to symbolically execute Formula (3.7), we need
to check whether the the universal guards γu in τ holds for all the entries of an
artifact relation (i.e. a finite but unknown number of tuples) rather than on a
bounded number as it is the case for the (plain) guard γ. To solve this problem,
the key idea is to design a syntactic transformation of the Universal RAS so as to
obtain a sufficiently precise abstraction that preserves the safety properties. The
abstraction is inspired by an analogous transformation introduced in [Alb+12b],
where this transformation is interpreted in a semantic way. In fact, in the context of
[Alb+12b], indexes e are not interpreted as entries of artifact relations as we do here,
but as (identifiers of) processes. When dealing with real processes that should follow
a protocol, it is usually legitimate to adopt the following (stopping) failure model:
processes can crash and crashed processes are not permitted to take an active role in
the protocol. In [Alb+12b] it is proved that, when this model is adopted, (modulo
bisimulation) universally guarded transitions can be replaced by transitions not
containing universal quantifiers. Intuitively, this is possible since in the abstracted
system the processes not satisfying the universal guards are interpreted as crashed:
from the moment they crash, they stop being considered in the current run.

In order to verify Universal RASs, we take inspiration from the results proved
in [Alb+12b]. Although it is not clear how to import the semantical interpretation
of crashing processes into our framework, it is still useful to introduce an analogous
syntactic transformation for Universal RASs into (plain) RASs. This allows us to
perform the safety verification on universal RASs via the backward reachability
procedure bypassing the formal issues due to universal guards. We point out that
RAS obtained by this transformation is a more liberal array-based system, i.e., it
has more runs than the original system. As a consequence, if a set of bad states
represented by the unsafe formula υ is shown to be unreachable for the abstracted
system, then it will also be unreachable for the original system.

Let S be a Universal RAS as in Section 3.2.2, and υ an unsafe formula describing
a set of unsafe states. To make clearer the formal definition of the syntactic
transformation, we split it in two different maps, namely (̃·) and (̂·), defined on
safety problems, i.e. pairs of a system and an unsafe formula. The first map (̃·)
introduces “failures” for some indexes and transforms a Universal RAS (S, υ) into
what we call an intermediate Universal RAS (S̃, υ̃). The last model is an instance
Universal RAS, since it still contains universal guards. The second map (̂·) removes
the universal guards and transforms (S̃, υ̃) to a (plain) RAS (Ŝ, υ̂). The last is a
plain RAS since it does not contain universally quantified guards anymore. The
two maps are formally shown in Table 4.1 and in Table 4.2, respectively. In the
following, we comment in details on these transformations.
First Step: (S, υ) 7−→ (S̃, υ̃) . The technique for introducing the “failure version”
of (S, υ) consists in adding an auxiliary variable and then in relativizing all
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quantifiers to a predicate A(e) representing the “non-failed/non-disappeared” entries.
This is achieved in the following way.

- In (a), we add a new sort ˜ELEM with two constant symbols t and f to Σfun of
the DB schema 〈Σ, T 〉 so that the models of T are expanded in such a way
that ˜ELEM is interpreted as a set of two elements, and t and f are mapped to
distinct elements of this set.

- In (b), the auxiliary artifact component am+1 is added to the original artifact
components a of the system and the resulting tuple of variables, comprising all
the artifact components of the new system, is denoted with ã. The abbreviation
A(e) is introduced in order to identify the conjunction of equalities between
the terms am+1[e] and the constant t. This predicate is essential in order to
relativize all the universal quantifiers to “non-failed” entries.

- In (c), the existential quantifier of the unsafe formula υ is “relativized” with
respect to A.

- In (d), the universal quantifier of the initial formula ι is also relativized with
respect to A.

- In (e), the existential and universal quantifiers of the transition formula are
relativized with respect to A; similarly, the case-defined functions of the updates
are also relativized so as to modify the values of the artifact components a
only whenever the auxiliary artifact component am+1 is set to t. Formally,
this is achieved by adding an extra parameter β to the case-defined function
and creating a new partition by splitting on its two possible values (either t
or f) and then distributing over κH1 , ..., κHk . According to this transformation,
formulae tr(x, a, x′, a′) from the definition of RASs (Section 3.2.2) are mapped
to

∃e, d

 A(e) ∧ γ(e, d, x, a) ∧ ∀k (A(k)⇒ γu(k, e, d, x, a))∧∧
i x
′
i = F A

i (e, d, x, a, am+1[e]) ∧ ∧j a′j = λy.GA
j(y, e, d, x, a, am+1[y])

∧ a′m+1 = am+1


(4.6)

where F A
i and GA

j are case-defined functions as defined in Table 4.1 The value
of am+1 is not changed by the transition t̃r`.

- In (e′), we formalize the fact that an entry can “disappear” at any time: we
disregard here what is the real interpretation of this phenomenon, it is just
instrumental to give an intuition of what the abstraction does. Formally, what
we do is to add the (r+ 1)-transition t̃rr+1, which leaves the original variables
in a unchanged and non-deterministically changes the value of a cell of am+1
from t to f. The notation upd(am+1, e, f) in Table 4.1 is an abbreviation for
the case-defined function λy.(if (y = e) then f else am+1[y]).
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- Finally, in (f), we construct the new transition formula τ̃ by taking the disjunction
of the “relativized” transition formulae t̃r1, ..., t̃rr with the additional disjunct
t̃rr+1.

We will show (Proposition 4.4.1 below) that if S̃ is safe w.r.t. υ̃, then also S is
safe w.r.t. υ. This is due to the fact that S̃ is an abstraction of S and contains more
unsafe traces. Traces in intermediate Universal RASs S̃ that lead to bad states and
that cannot be interpreted as legitimate runs in S are called spurious traces.
Second Step: (S̃, υ̃) 7−→ (Ŝ, υ̂) . We now eliminate the universal guards γu. The
definition of this map is simpler than the previous one.

- We do not modify further what we already modified in the first step: the DB
theory (a), the tuple of the artifact variables and the tuple of the artifact
components (b), the safety (c) and the initial formulae (d), and (e′) the
additional transition non-deterministically updating the auxiliary variable
as+1 are all defined as in the First Step.

- The interesting part of the map (̂·) is (e), where we to transform the formu-
lae t̃r1, ..., t̃rr by replacing the universally quantified formula ∀k (A(k) ⇒
γu(k, e, d, x, a)) in the guard by the finite conjunction of quantifier-free formu-
lae ∧k∈e γu(k, e, d, x, a); in addition, we modify the case-defined function of the
updates as follows. First, we update the arrays a only in the correspondence
of the entries k such that the auxiliary variable am+1[k] is set to t (as before)
and for which the (removed) universal guard γu(k, e, x, a) holds. Formally, we
create a new partition by splitting on γu(k, e, d, x, a) and then distributing
over the intermediate partition (κGj

1 ∧ β = t), ..., (κGj

k ∧ β = t), β = f.
Furthermore—and most importantly—we force (through the update function
f∀A ) the value of am+1[k] for those entires k for which γu(k, e, x, a) does not
hold to become f. According to this transformation, formulae of the form (4.6)
are mapped to

∃e, d

 A(e) ∧ γ(e, d, x, a) ∧ ∧k∈e γu(k, e, d, x, a) ∧ ∧i x′i = F A,∀
i (e, d, x, a)∧

∧∧j a′j = λy.GA,∀
j (y, e, d, x, a, am+1[y])

∧a′m+1 = λy.f A,∀(y, e, d, x, a, am+1[y])


(4.7)

where F A,∀
i , GA,∀

j , f A,∀ are as formally defined in Table 4.2.

We will show (Proposition 4.4.3 below) that the safety problems (S̃, υ̃) and (Ŝ, υ̂)
have the same answer. Traces in the RAS Ŝ that lead to bad states that cannot be
interpreted as legitimate runs in the original Universal RAS S are also called
spurious traces.



4. Safety Verification of Artifact Systems 93

4.4.1 Properties of (S, υ) 7→ (S̃, υ̃)
We recall that when the answer to a safety problem (S, υ) is safe (unsafe), we say
that S is safe (unsafe, respectively) with respect to υ.

Proposition 4.4.1. If S̃ is safe with respect to υ̃, then S is safe with respect to υ.

Proof. Suppose (by contra-position) that

ι(x0, a0) ∧ τ(x0, a0, x0, a1) ∧ · · · ∧ τ(xn−1, an−1, xn, an) ∧ υ(xk, ak)

is satisfiable in a DB-instanceM under a certain assignment α. We expand the
modelM to a DB-instance M̃ in the obvious way by interpreting ˜ELEM as a set
containing two distinct elements, say 0 and 1 for the constants f and t, respectively,
and interpreting am+1 as a (total) functions from INDEXM to {0, 1}. Then, we
expand the assignment α by assigning to k-copies (am+1)1, · · · , (am+1)k of the new
array variable am+1 the array whose constant value is 1. In this way, it is easy to
see that

M, α |= ι(x̃0, ã0) ∧ τ(x̃0, ã0, x̃1, ã1) ∧ · · · ∧ τ(x̃n−1ãn−1, x̃n, ãn) ∧ υ(x̃n, ãn)

holds under the assignment α as expanded above and hence S̃ is unsafe with
respect to υ̃.

Safety of the intermediate RAS S̃ implies safety of the original Universal RAS
S. The contrary is false for arbitrary Universal RASs, because of the presence of
spurious unsafe traces in intermediate Universal RASs.

4.4.2 Properties of (S̃, υ̃) 7→ (Ŝ, υ̂)
Consider the transition t̂r` of the target RAS in Table 4.2: the universal quantifier
in the universal guard γu of t̂r` in the intermediate Universal RAS has been
eliminated and the corresponding values in am+1 of those entries violating the
universal guard γu are set to f. In this paragraph, we show that the elimination
of these universal conditions from intermediate Universal RASs is without loss of
precision when verifying safety properties. Again, the argument is based on what
proved in [Alb+12b]. The reason why S̃ and Ŝ are equivalent w.r.t. detecting
safety is that the transition τ̂ can be simulated by finitely many application of
the additional transition t̃rr+1 followed by the application of ∨n`=1 t̃r`. In fact, the
universal condition of the guard has been instantiated in t̂r` of Table 4.2 only with
the entries k ∈ e enabling the transition. This implies that the transition can fire
anyway if the values of am+1 over the entries violating the universal guard have
been set to f before the transition applies. To make this intuition precise, we need
to introduce some technical notions and, in particular, the notion of bisimulation.

Let S = 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉 be a Universal RAS. A state of S
is a pair (s,M) where M is a DB-instance and s := 〈xM, aM〉. A configuration
of S is a state (s,M) where SM is a finite set, for every S ∈ Σext.
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Below, we writeMs to denote the (finite) Σ∪Σext-substructure ofM generated
by s, where s andM are taken from a configuration C := (s,M). The n-th iteration
of τ(x, a, x′, a′) is inductively defined as follows: (i) τ 0(x, a, x′, a′) := (x = x′)∧ (a =
a′) and (ii) τn+1(x, a, x′, a′) := ∃x′′, a′′(τ(x, a, x′′, a′′) ∧ τn(x′′, a′′, x′, a′)).

Definition 4.4.1. Let S1 = 〈Σ, T,Σext , x, a, ι1, τ1〉 and S2 = 〈Σ, T,Σext , x, a, ι2, τ2〉
be two Universal RASs (notice that, in particular, S1 and S2 share the same DB
schema 〈Σ, T 〉). A bisimulation between them is a relation R between configurations
C1 := (s1,Ms1

) of S1 and C1 := (s1,Ms2
) of S2 satisfying the following properties:

- for every s1, there exists s2 such that R(C1, C2) holds (and vice versa);

- if R(C1, C2), thenMs1
|= ι1(s1) iffMs2

|= ι2(s2);

- if R(C1, C2) and Ms1
|= τ(s1, s

′
1) for some configuration C ′1 := (s′1,Ms′

1
), then

there exist C ′2 and n ≥ 0 such that R(C ′1, C ′2) andMs2
|= τn(s2, s

′
2) (and vice

versa).

The safety problems (S1, υ1) and (S2, υ2) are compatible with the bisimulation R iff
R(C1, C2) implies thatMs1

|= υ1(s1) iffMs2
|= υ2(s2).

Let us call ∃∀-formulae the formulae of the kind

∃e ∀i φ(e, i, x, a) (4.8)

where the variables e, i are variables whose sort is an artifact sort and φ is quantifier-
free. We remark that the only allowed universally quantified variables in ∃∀-
formulae are all of artifact sorts.

The following key property for bisimulations of Universal RASs is an immediate
consequence of the fact that symbolic unsafe traces (i.e., Formulae (4.5)) in the
definition of the safety problem are ∃∀-formulae and that a ∃∀-formula is satisfiable
in a generic DB-instance iff it is satisfiable in DB-instance where each artifact
relation is a finite set1.

Lemma 4.4.2. Suppose that R is a bisimulation between S1 =
〈Σ, T,Σext , x, a, ι1, τ1〉 and S2 = 〈Σ, T,Σext , x, a, ι2, τ2〉 and that the safety
problems (S1, υ1) and (S2, υ2) are compatible with R. Then, S1 is safe with respect
to υ1 iff S2 is safe with respect to υ2.

Proof. First of all, we show the claim that a symbolic unsafe trace is a ∃∀-formula.
Then, we exploit the fact that an ∃∀-formula is satisfiable in a DB-instance M
of 〈Σext , T 〉 iff it is satisfiable in DB-instance M′ of 〈Σext , T 〉 where, for every
S ∈ Σext, SM

′ is a finite set: indeed, thanks to the claim, symbolic unsafe traces
are ∃∀-formulae, hence we can just focus on configurations in order to detect safety.

1this fact follows trivially by the definitions since artifact sorts are not target of any function
symbol, but it is also explicitly noticed in an analogous but slightly different context in [Alb+12b])
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This shows that the compatibilty (with a bisimilation R) implies the equivalence of
the safety problems.

Let us now prove the claim. Suppose we have a symbolic unsafe trace
(Formula (4.5)):

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

that is true in a DB-instanceM of 〈Σext , T 〉, under some assignment a inM.
Now, the Formula (4.5) is satisfiable in a Σext-structure M under a suitable

assignment iff the formula

ι(x0, a0) ∧ ∃a1∃x1(τ(x0, a0, x1, a1) ∧ · · ·
· · · ∧ ∃ak∃xk(τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)) · · · )

is satisfiable inM under a suitable assignment. We now show that the latter is
equivalent to a formula of the kind

ι(x, a) ∧ ∃e ∃y (φ(e, y, x, a) ∧ ∀k ψ(k, e, y, x, a)) (4.9)

where φ and ψ are quantifier-free, the e are variables of artifact sorts and the y are
variables of basic sorts (we renamed x0, a0 as x, a).

We manipulate the formula

∃x′ ∃a′ (τ(x, a, x′, a′) ∧ ∃e φ(e, x′, a′)) (4.10)

up to logical equivalence, where τ is given by2

∃e0

(
γ(e0, x, a) ∧ (∀k γu(k, e, y, x, a)) ∧ x′ = F (e0, x, a) ∧ a′ = λy.G(y, e0, x, a)

)
(here we used plain equality for conjunctions of equalities, e.g. x′ = F (e0, x, a)
stands for ∧i x′i = Fi(e, x, a)). Repeated substitutions show that (4.10) is equivalent
to

∃e ∃e0

(
γ(e0, x, a) ∧ (∀k γu(k, e, y, x, a)) ∧ φ(e, F (e0, x, a)/x′, λy.G(y, e0, x, a)/a′)

)
which is a formula of the required format.

Hence, the Formula (4.5) is satisfiable in a Σext-structureM under a suitable
assignment iff a formula of the kind (4.9) is satisfiable in a Σext-structureM under
a suitable assignment.

However, the satisfiability of (4.9) is clearly the same as the satisfiability of
∃e (ι(x, a) ∧ φ(e, y, x, a) ∧ ∀k (ψ(k, e, y, x, a))); the latter, in view of (3.5), has the
following format:

2Actually, τ is a disjunction of such formulae, but it easily seen that disjunction can be
accommodated by moving existential quantifiers back-and-forth through them.
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∃e

(
n∧
i=1

xi = ci) ∧ ∀k1 (
m∧
j=1

aj[k1] = dj) ∧ φ(e, y, x, a) ∧ ∀k (ψ(k, e, y, x, a))


. Pushing the universal quantifiers in front of the formula, we get:

∃e ∀k1, k

(
n∧
i=1

xi = ci) ∧ (
m∧
j=1

aj[k1] = dj) ∧ φ(e, y, x, a) ∧ (ψ(k, e, y, x, a))


. which is a ∃∀-formula, as wanted.

The following proposition states that the safety problems for S̃ and Ŝ are
equivalent.

Proposition 4.4.3. Let S = 〈Σ, T,Σext , x, a, ι, τ〉 be a Universal RAS and (S, υ)
be a safety problem for it. Then, S̃ is safe with respect to υ̃ iff Ŝ is safe with respect
to υ̂.

Proof. We apply Lemma 4.4.2 with the identity relation as the bisimulation. The
proof can be concluded by observing that the transition τ̂ can be simulated by
finitely many applications of the additional transition t̃rr+1 in the intermediate
Universal RAS of Table 4.1 followed by a single application of τ̃ ; conversely, each
application of τ̃ is obviously also an application of τ̂ .

The importance of Proposition 4.4.3 lies in the fact that the transition τ̂ of Ŝ does
not have universal quantifiers in guards. This allows us to automate BReachRAS
over (Ŝ, υ̂) as explained in Section 4.3.

We are now ready to prove the main result about the transformation from
Universal RASs to RASs, which is a consequence of Proposition 4.4.3 and
Proposition 4.4.1:

Proposition 4.4.4. Let S = 〈Σ, T,Σext , x, a, ι, τ〉 be a Universal RAS and υ be an
unsafe formula. Then, if the (plain) RAS Ŝ is safe with respect to υ̂, then S is safe
with respect to υ.

The previous proposition is significant because it partially reduces the problem
of assessing safety for Universal RASs to the one of assessing safety for plain RASs.
Unfortunately, this reduction is partial because when the plain RAS Ŝ is unsafe
w.r.t. υ̂, nothing can be established for the original Universal RAS S. If we are
able to show that BReachRAS is sound for checking unsafety of RASs, then we
conclude, thanks to the previous observations, that we can still run BReachRAS
over (Ŝ, υ̂), with S Universal RAS: in case we find out that the output is SAFE,
we can conclude safety of S w.r.t. υ as well.

The following section is devoted to attack the problem of verifying safety of
plain RASs via BReachRAS and showing that this procedure is sound for checking
safety of BReachRAS.
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4.5 Effectiveness and Soundness for BReachRAS
In this section, we prove effectiveness and soundness of BReachRAS. Before doing
that, we recall some notations.

When introducing our transition formulae in (3.4), (3.7) we made use of definable
extensions and also of some function definitions via λ-abstraction. We already
observed that such uses are due to notational convenience and do not really go
beyond first-order logic. We are clarifying one more point now, before going into
formal proofs. The lambda-abstraction definitions in (3.7) will make the proof of
Lemma 4.5.1 below smooth. Recall that an expression like

b = λy.F (y, z)

can be seen as a mere abbreviation of ∀y b(y) = F (y, z). However, the use of such
abbreviation makes clear that e.g. a formula like

∃b (b = λy.F (y, z) ∧ φ(z, b))

is equivalent to

φ(z, λy.F (y, z)/b) . (4.11)

Since our φ(z, b) is in fact a first-order formula, our b can occur in it only in
terms like b(t), so that in (4.11) all occurrences of λ can be eliminated by the
so-called β-conversion: replace λyF (y, z)(t) by F (t, z). Thus, in the end, whether
we use definable extensions or definitions via lambda abstractions, the formulae we
manipulate can always be converted into plain first-order Σ- or Σext-formulae.

Let us call extended state formulae the formulae of the kind ∃e φ(e, x, a), where
φ is quantifier-free and the e are individual variables of both artifact and basic sorts.

Lemma 4.5.1. The preimage of an extended state formula is logically equivalent
to an extended state formula.

Proof. We manipulate the formula

∃x′ ∃a′ (τ(x, a, x′, a′) ∧ ∃e φ(e, x′, a′)) (4.12)

up to logical equivalence, where τ is given by3

∃e0 (γ(e0, x, a) ∧ x′ = F (e0, x, a) ∧ a′ = λy.G(y, e0, x, a)) (4.13)

(here we used plain equality for conjunctions of equalities, e.g. x′ = F (e0, x, a)
stands for ∧i x′i = Fi(e, x, a)). Repeated substitutions show that (4.12) is equivalent
to

∃e ∃e0 (γ(e0, x, a) ∧ φ(e, F (e0, x, a)/x′, λy.G(y, e0, x, a)/a′)) (4.14)
which is an extended state formula.

3Actually, τ is a disjunction of such formulae, but it easily seen that disjunction can be
accommodated by moving existential quantifiers back-and-forth through them.
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Lemma 4.5.2. For every extended state formula there is a state formula equivalent
to it in all Σext-models of T ∗.

Proof. Let ∃e ∃y φ(e, y, x, a), be an extended state formula, where φ is quantifier-
free, the e are variables whose sort is an artifact sort and the y are variables whose
sort is a basic sort.

Now observe that, according to our definitions, the artifact components have
an artifact sort as source sort and a basic sort as target sort; since equality is the
only predicate, the literals in φ can be divided into equalities/inequalities between
variables from e and literals where the e can only occur as arguments of an artifact
component. Let a[e] be the tuple of the terms among the terms of the kind aj[es]
which are well-typed; using disjunctive normal forms, our extended state formula
can be written as a disjunction of formulae of the kind

∃e ∃y (φ1(e) ∧ φ2(y, x, a[e]/z)) (4.15)

where φ1 is a conjunction of equalities/inequalities, φ2(y, x, z) is a quantifier-free
Σ-formula and φ2(y, x, a[e]/z) is obtained from φ2 by replacing the variables z by
the terms a[e]. Moving inside the existential quantifiers y, we can rewrite (4.15) to

∃e (φ1(e) ∧ ∃y φ2(y, x, a[e]/z)) (4.16)

Since T ∗ has quantifier elimination, we have that there is ψ(x, z) which is equivalent
to ∃y φ2(y, x, z)) in all models of T ∗; thus in all Σext-models of T ∗, the formula (4.16)
is equivalent to

∃e (φ1(e) ∧ ψ(x, a[e]/z))

which is a state formula.

We underline that the proofs of Lemmas 4.5.1 and 4.5.2 both give an explicit
effective procedure for computing equivalent (extended) state formulae. Used one
after the other, such procedures extends the procedure QE(T ∗, φ) in Line 6 of
Algorithm 1 to (not simple) artifact systems. Thanks to such procedure, the
only formulae we need to test for satisfiability in lines 2 and 3 of the backward
reachability algorithm are the ∃∀-formulae introduced below.

We recall from the previous section that the formulae of the kind

∃e ∀i φ(e, i, x, a)

are called ∃∀-formulae, where the variables e, i are variables whose sort is an artifact
sort and φ is quantifier-free. The crucial point for the following lemma to hold is
that the universally quantified variables in ∃∀-formulae are all of artifact sorts:

Lemma 4.5.3. The satisfiability of a ∃∀-formula in a Σext-model of T is decidable.
Moreover, given a ∃∀-formula χ, the following three statements are equivalent:

• χ is satisfiable in a Σext-model of T
• χ is satisfiable in a DB-instance of 〈Σext , T 〉
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• χ is satisfiable in a Σext-model of T ∗.

Proof. First of all, notice that a ∃∀-formula (4.8) is equivalent to a disjunction of
formulae of the kind

∃e (AllDiff(e) ∧ ∀i φ(e, i, x, a)) (4.17)

where AllDiff(e) says that any two variables of the same sort from the e are distinct
(to this aim, it is sufficient to guess a partition and to keep, via a substitution, only
one element for each equivalence class).4 So we can freely assume that ∃∀-formulae
are all of the kind (4.17).

Let us consider now the set of all (sort-matching) substitutions σ mapping the i
to the e. The formula (4.17) is satisfiable (respectively: in a Σext-model of T , in a
DB-instance of 〈Σext , T 〉, in a Σext-model of T ∗) iff so it is the formula

∃e (AllDiff(e) ∧
∧
σ

φ(e, iσ, x, a)) (4.18)

(here iσ means the componentwise application of σ to the i): this is because, if (4.18)
is satisfiable in M, then we can take as M′ the same Σext-structure as M, but
with the interpretation of the artifact sorts restricted only to the elements named
by the e and get in this way a Σext-structure M′ satisfying (4.17) (M′ is still a
DB-instance of 〈Σext , T 〉 or a Σext-model of T ∗, if so wasM). Thus, we can freely
concentrate on the satisfiability problem of formulae of the kind (4.18) only.

Now, by the way Σext is built, the only atoms occurring in the subformula
φ(e, iσ, x, a)) of (4.18) whose argument terms are terms of artifact sorts are of the
kind es = ej, so all such atoms can be replaced either by > or by ⊥ (depending on
whether we have s = j or not). So we can assume that there are no such atoms in
φ(e, iσ, x, a)) and as a result, the variables e can only occur there as arguments of
the a.

Let now a[e] be the tuple of the terms among the terms of the kind aj [es] which
are well-typed. Since in (4.18) the e can only occur as arguments of the artifact
components, as observed above, the formula (4.18) is in fact of the kind

∃e (AllDiff(e) ∧ ψ(x, a[e]/z)) (4.19)

where ψ(x, z) is a quantifier-free Σ-formula and ψ(x, a[e]/z) is obtained from ψ by
replacing the variables z with the terms a[e] (the z are of basic sorts because the
target sorts of the artifact components are basic sorts).

It is now evident that (4.19) is satisfiable (respectively: in a Σext-model of T , in
a DB-instance of 〈Σext , T 〉, in a Σext-model of T ∗) iff the formula

ψ(x, z) (4.20)
4In the MCMT implementation, state formulae are always maintained so that all existential

variables occurring in them are differentiated and there is no need of this expensive computation
step.
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is satisfiable (respectively: in a Σ-model of T , in a DB-instance of 〈Σ, T 〉, in a
Σ-model of T ∗). In fact, if we are given a Σ-structure M and an assignment
satisfying (4.20), we can easily expand M to a Σext-structure by taking the e’s
themselves as the elements of the interpretation of the artifact sorts; in the so-
expanded Σext-structure, we can interpret the artifact components a by taking the
a[e] to be the elements assigned to the z in the satisfying assignment for (4.20).

Thanks to Assumption 4.1.1, the satisfiability of (4.20) in a Σ-model of T , in a
DB-instance of 〈Σ, T 〉, or in a Σ-model of T ∗ are all equivalent and decidable.

The instantiation algorithm of Lemma 4.5.3 can be used to discharge the
satisfiability tests in lines 2 and 3 of Algorithm 1 because the conjunction of a
state formula and of the negation of a state formula is a ∃∀-formula (ι is itself
the negation of a state formula, according to (3.5)).

Theorem 4.3.2. Let 〈Σ, T 〉 be a DB schema. Then, for every RAS S =
〈Σ, T,Σext , x, a, ι, τ〉, backward search BReachRAS (cf. Algorithm 2) is effective
and sound for checking unsafety of S wrt an unsafe formula υ.

Proof. Recall that S is safe iff there is no DB-instanceM of 〈Σext , T 〉, no k ≥ 0 and
no assignment inM to the variables x0, a0 . . . , xk, ak such that the formula (4.5)

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

is true inM. It is sufficient to show that this is equivalent to saying that there
is no Σext-model M of T ∗, no k ≥ 0 and no assignment in M to the variables
x0, a0 . . . , xk, ak such that (4.5) is true inM (once this is shown, the proof goes in
the same way as the proof of Theorem 4.2.1).

Now, the formula (4.5) is satisfiable in a Σext-structure M under a suitable
assignment iff the formula

ι(x0, a0) ∧ ∃a1∃x1(τ(x0, a0, x1, a1) ∧ · · ·
· · · ∧ ∃ak∃xk(τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)) · · · )

is satisfiable in M under a suitable assignment; by Lemma 4.5.1, the latter is
equivalent to a formula of the kind

ι(x, a) ∧ ∃e∃y φ(e, y, x, a) (4.21)

where ∃e ∃y φ(e, y, x, a) is an extended state formula (thus φ is quantifier-free, the
e are variables of artifact sorts and the y are variables of basic sorts - we renamed
x0, a0 as x, a). However the satisfiability of (4.21) is the same as the satisfiability
of ∃e (ι(x, a) ∧ φ(e, y, x, a)); the latter, in view of (3.5), is a ∃∀-formula and so
Lemma 4.5.3 applies and shows that its satisfiability in a DB-instance of 〈Σext , T 〉
is the same as its satisfiability in a Σext-model of T ∗.
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To sum up, in this section we remarked that for Algorithm 2, to be effective, we
need decision procedures for discharging the satisfiability tests in Lines 2-3. Thanks
to the subprocedure QERAS(T ∗, φ), the only formulae we need to test in these lines
have a specific form (i.e. they are ∃∀-formulae). In fact, by our hypotheses in
Assumption 4.1.1, we can freely assume that all the runs we are interested in take
place inside models of T ∗ (where we can eliminate quantifiers binding variables of
basic sorts). Then, in two first technical lemmas (Lemmas 4.5.1 and 4.5.2) we show
that the preimage of a state formula is an extended state formula and that such an
extended state formula can be converted back (modulo T ∗) into a state formula;
finally, in a third technical lemma (Lemma 4.5.3), we show that entailments between
state formulae (more generally, satisfiability of formulae of the kind ∃∀) can be
decided via finite instantiation techniques. These observations make both safety and
fixpoint tests effective and constitute the skeleton of the proof of Theorem 4.3.2.

Remark 4.5.1. The role of quantifier elimination (Line 6 of Algorithm 1) is twofold:
(i) It allows us to discharge the fixpoint test of Line 2 (see Lemma 4.5.3). (ii) It
ensures termination in significant cases, namely those where (strongly) local formulae,
introduced in the next chapter, are involved.

We end the section by showing also the main theorem about U-RASs, which is
now a straightforward consequence of Proposition 4.4.4 and Thereom 4.3.2.

Theorem 4.3.1. BReachRAS is partially sound for checking unsafety of an Universal
RAS S w.r.t. an unsafe formula υ.

4.6 Examples of DB Schemas Satisfying the As-
sumption

We already stated the model-theoretic requirements that the DB theory T from
Definition 3.1.1 must satisfy for our approach to work. In this section, we show
some examples of theories that satisfy them, in particular the case of an acyclic
signature Σ and with key dependencies (i.e., the setting presented in [LDV17]).

Examples of DB theories with the Finite Model Property

Observe that if Σ is acyclic, there are only finitely many terms involving a single
variable x: in fact, there are as many terms as paths in G(Σ) starting from the sort
of x. If kΣ is the maximum number of terms involving a single variable, then (since
all function symbols are unary) there are at most kΣ · n terms involving n variables.

Proposition 4.6.1. Let (Σ, T ) be a DB (extended-)schema; T has the finite model
property in case Σ is acyclic.
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Proof. If T := ∅, then congruence closure ensures that the finite model property
holds and decides constraint satisfiability in polynomial time [BM07].

Otherwise, we reduce the argument to the Herbrand Theorem (recall that T is
universal according to Definition 3.1.1). Indeed, suppose to have a finite set Φ of
universal formulae and let φ(x) be the constraint we want to test for satisfiability.
Replace the variables x with free constants a. Herbrand Theorem states that
Φ∪{φ(a)} has a model iff the set of ground Σa-instances of Φ∪{φ(a)} has a model.
These ground instances are finitely many by acyclicity, so we can apply congruence
closure (as done in the case of the empty theory) to these ground instances.

Remark 4.6.1. If T is finitely axiomatized, Proposition 4.6.1 ensures decidability
of constraint satisfiability. In order to obtain a decision procedure, it is sufficient
to instantiate the axioms of T and the axioms of equality (reflexivity, transitivity,
symmetry, congruence) and to use a SAT solver to decide constraint satisfiability.
Alternatively, one can decide constraint satisfiability via congruence closure [BM07]
and avoid instantiating the equality axioms.

Remark 4.6.2. Acyclity is a strong condition, often too strong. However, some
condition must be imposed (otherwise we have undecidability, and then failure
of finite model property, by reduction to word problem for finite presentations of
monoids). In fact, the empty theory and the theory axiomatized by Axioms (3.1)
both have the finite model property even without acyciclity assumptions.

Examples of Model Completions of DB theories.

We study some interesting cases where the model completion of T exists. The
following Lemma gives a useful folklore technique for finding model completions:

Lemma 4.6.2. Suppose that for every primitive Σ-formula ∃xφ(x, y) it is possible
to find a quantifier-free formula ψ(y) such that

(i) T |= ∀x∀y (φ(x, y)→ ψ(y));

(ii) for every modelM of T , for every tuple of elements a from the support ofM
such thatM |= ψ(a) it is possible to find another model N of T such that
M embeds into N and N |= ∃xφ(x, a).

Then T has a model completion T ∗ axiomatized by the infinitely many sentences

∀y (ψ(y)→ ∃xφ(x, y)) . (4.22)

Proof. From (i) and (7.1) we clearly get that T ? admits quantifier elimination: in
fact, in order to prove that a theory enjoys quantifier elimination, it is sufficient to
eliminate quantifiers from primitive formulae (then the quantifier elimination for
all formulae can be easily shown by an induction over their complexity). This is
exactly what is guaranteed by (i) and (7.1).



4. Safety Verification of Artifact Systems 103

Let M be a model of T . We show (by using a chain argument) that there
exists a modelM′ of T ? such thatM embeds intoM′. For every primitive formula
∃xφ(x, y), consider the pair (a, ∃xφ(x, a)) such thatM |= ψ(a) (where ψ is related
to φ as in (i)). By Zermelo’s Theorem, the set of all pairs {(a,∃xφ(x, a))} can
be well-ordered: let {(ai, ∃xφi(x, ai))}i∈I be such a well-ordered set (where I is an
ordinal). By transfinite induction on this well-order, we defineM0 :=M and, for
each i ∈ I, Mi as an extension of ⋃j<iMj such that Mi |= ∃xφi(x, ai), which
exists for (ii) since ⋃j<iMj |= ψ(ai) (remember that validity of ground formulae is
preserved passing through substructures and superstructures, andM0 |= ψ(ai)).

Now we take the chain unionM1 := ⋃
i∈IMi: since T is universal,M1 is again

a model of T , and it is possible to construct an analogous chainM2 as done above,
starting from M1 instead of M. Clearly, we get M0 := M ⊆ M1 ⊆ M2 by
construction. At this point, we iterate the same argument countably many times,
so as to define a new chain of models of T :

M0 :=M⊆M1 ⊆ ... ⊆Mn ⊆ ...

Defining M′ := ⋃
nMn, we trivially get that M′ is a model of T such that

M⊆M′ and satisfies all the sentences of type (7.1). The last fact can be shown
using the following finiteness argument.

Fix φ, ψ as in (7.1). For every tuple a′ ∈M′ such thatM′ |= ψ(a′), by definition
ofM′ there exists a natural number k such that a′ ∈Mk: since ψ(a′) is a ground
formula, we get that also Mk |= ψ(a′). Therefore, we consider the step k of
the countable chain: there, we have that the pair (a′,∃xφ(x, a′)))) appears in the
enumeration given by the well-ordered set of pairs {(ai,∃xφi(x, ai))}i∈I such that
Mk |= ψi(ai). Hence, by construction, we have thatMk

i |= ∃xφ(x, a′) for some i.
In conclusion, since the existential formulae are preserved passing to extensions, we
obtainM′ |= ∃xφ(x, a′), as wanted.

Proposition 4.6.3. T has a model completion in case it is axiomatized by universal
one-variable formulae and Σ is acyclic.

Proof. We freely take inspiration from an analogous result in [Whe76]. We
preliminarily show that T is amalgamable. Then, for a suitable choice of ψ suggested
by the acyclicity assumption, the amalgamation property will be used to prove the
validy of the condition (ii) of Lemma 4.6.2: this fact (together with condition (i))
yields that T has a model completion which is axiomatized by the infinitely many
sentences (7.1).

Let M1 and M2 two models of T with a submodel M0 of T in common
(we suppose for simplicity that |M1| ∩ |M2| = |M0|). We define a T -amalgam
M of M1,M2 over M0 as follows (we use in an essential way the fact that Σ
contains only unary function symbols). Let the support ofM be the set-theoretic
union of the supports of M1 and M2, i.e. |M| := |M1| ∪ |M2|. M has a
natural Σ-structure inherited by the Σ-structuresM1 andM2: for every function
symbol f in Σ, we define, for each mi ∈ |Mi|(i = 1, 2), fM(mi) := fMi(mi), i.e.
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the interpretation of f in M is the interpretation of f in Mi for every element
mi ∈ |Mi|. This is well-defined since, for every a ∈ |M1| ∩ |M2| = |M0|, we
have that fM(a) := fM1(a) = fM0(a) = fM2(a). It is clear thatM1 andM2 are
substructures ofM, and their inclusions agree onM0.

We show that the Σ-structure M, as defined above, is a model of T . By
hypothesis, T is axiomatized by universal one-variable formulae: so, we can consider
T as a theory formed by axioms φ which are universal closures of clauses with just
one variable, i.e. φ := ∀x(A1(x)∧ ...∧An(x)→ B1(x)∨ ...∨Bm(x)), where Aj and
Bk (j = 1, ..., n and k = 1, ...,m) are atoms.

We show thatM satisfies all such formulae φ. In order to do that, suppose that,
for every a ∈ |M|,M |= Aj(a) for all j = 1, ..., n. If a ∈ |Mi|, thenM |= Aj(a)
implies Mi |= Aj(a), since Aj(a) is a ground formula. Since Mi is model of T
and soMi |= φ, we get thatMi |= Bk(a) for some k = 1, ...,m, which means that
M |= Bk(a), since Bk(a) is a ground formula. Thus,M |= φ for every axiom φ of
T , i.e. M |= T and, hence,M is a T -amalgam ofM1,M2 overM0, as wanted

Now, given a primitive formula ∃xφ(x, y), we find a suitable ψ such that the
hypothesis of Lemma 4.6.2 holds. We define ψ(y) as the conjunction of the set of all
quantifier-free χ(y)-formulae such that φ(x, y)→ χ(y) is a logical consequences of T
(they are finitely many - up to T -equivalence - because Σ is acyclic). By definition,
clearly we have that (i) of Lemma 4.6.2 holds.

We show that also condition (ii) is satisfied. LetM be a model of T such that
M |= ψ(a) for some tuple of elements a from the support ofM. Then, consider the
Σ-substructureM[a] ofM generated by the elements a: this substructure is finite
(since Σ is acyclic), it is a model of T and we trivially have thatM[a] |= ψ(a), since
ψ(a) is a ground formula. In order to prove that there exists an extensionN ′ ofM[a]
such that N |= ∃xφ(x, a), it is sufficient to prove (by the Robinson Diagram Lemma)
that the Σ|M[a]|∪{e}-theory ∆(M[a]) ∪ {φ(e, a)} is T -consistent. For reduction to
absurdity, suppose that the last theory is T -inconsistent. Then, there are finitely
many literals l1(a), ..., lm(a) from ∆(M[a]) (remember that ∆(M[a]) is a finite set
of literals sinceM[a] is a finite structure) such that φ(e, a) |=T ¬(l1(a)∧ ...∧ lm(a)).
Therefore, defining A(a) := l1(a) ∧ ... ∧ lm(a), we get that φ(e, a) |=T ¬A(a),
which implies that ¬A(a) is one of the χ(y)-formulae appearing in ψ(a). Since
M[a] |= ψ(a), we also have thatM[a] |= ¬A(a), which is a contradiction: in fact,
by definition of diagram,M[a] |= A(a) must hold. Hence, there exists an extension
N ′ ofM[a] such that N ′ |= ∃xφ(x, a). Now, by amalgamation property, there exists
a T -amalgam N ofM and N ′ overM[a]: clearly, N is an extension ofM and,
since N ′ ↪→ N and N ′ |= ∃xφ(x, a), also N |= ∃xφ(x, a) holds, as required.

Remark 4.6.3. The proof of Proposition 4.6.3 gives an algorithm for quantifier
elimination in the model completion. The algorithm works as follows (see the
formula (7.1)): to eliminate the quantifier ∃x from ∃xφ(x, y) take the conjunction
of the clauses χ(y) implied by φ(x, y). This algorithm is highly impractical because
it requires one to enumerate all such χ(y). However, contrary to what happens
in linear arithmetics, the quantifier elimination needed to prove Proposition 4.6.3
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has a much better behavior (from the complexity point of view) if obtained via
a suitable version of the Knuth-Bendix procedure [BN98] or of the Superposition
Calculus [NR01]: this will be the core of Chapter 7, where we will see that quantifier
elimination becomes a practical problem. Specifically, we will see that, using a
constrained version of Superposition, in the case of free unary functions and free
relations the complexity has a quadratic bound even without assuming acyclicity.

A second limitation of the algorithm presented in Proposition 4.6.3 is that it
uses the acyclicity assumption, whereas such assumption, as just noticed, is in
general not needed for Proposition 4.6.3 to hold: for instance, when T := ∅ or when
T contains only Axiom (3.1), a model completion can be proved to exist, even if Σ
is not acyclic, again by using the constrained version of Superposition presented in
Chapter 7.

Remark 4.6.4. Proposition 4.6.3 holds also for specific DB extended-schemas,
i.e. DB schemas extended with n-ary relations and s.t. the universal one-variable
formulae do not involve the relation symbols (so, the relations are “free”): as
explained in Section 7.6, the implementation of the quantifier elimination algorithm
takes into account also this case. More generally, the model completion exists
whenever we consider an acyclic DB extended-schema with a DB extended-theory
T that enjoys the amalgamation property.

We conclude this section by summarizing what we have proved so far. Indeed,
as a corollary, we get that Assumption 4.1.1 is matched in the following three
cases: (i) when T is empty; (ii) when T is axiomatized by Axioms (3.1); (iii) when
Σ is acyclic and T is axiomatized by universal one-variable formulae (such as
Axioms (3.1)).

Hence, this proves in particular that artifact-centric model in the style of [DLV16;
LDV17] that we intended to capture (case (ii)) matches Assumption 4.1.1.

Remark 4.6.5. The arguments and the remarks above show that the DB extended-
schemas obtained by adding “free” relations to the DB schemas of (i), (ii), (iii)
above match Assumption 4.1.1. In addition, Assumption 4.1.1 is also satisfied in
case the previous DB schemas are combined (always in the spirit of DB extended-
schemas, cf. Subsection 3.1.1) with an arithmetic theory T ′ admitting quantifier
elimination (e.g., linear real arithmetic): indeed, in this case, we clearly have that a
model completion exists, i.e. T ′ = T ′∗.

4.7 Discussion

4.7.1 Model Checking via Quantifier Elimination in Model
Completions

In Section 4.2, we argued that the presence of existentially quantified ‘data’ variables
ranging over the DB instance creates serious issues when one tries to apply the
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SMT-based backward reachability procedure defined in [GR10a] to DAP verification.
Indeed, in order to guarantee the regressability of the backward search, one needs
to ‘eliminate’ in some sense the existentially quantified ‘data variables’ that are
introduced at each step of the main loop when computing preimages. The dramatic
growth in the number of quantified variables would also affect the performance of
the procedure. For these reasons, the ‘elimination’ of quantified variables is not only
essential for guaranteeing the correctness of the procedure, but also for improving
the overall performance of the implementation in mcmt. We also underline that
the ‘elimination’ of existentially quantified variables is exactly the right ingredient
that is needed to guarantee termination of backward search for two notable classes
that will be discussed in detail in the next chapter, namely the one for acyclic SASs
and the one for ‘Local RASs’ (see Chapter 5 for the definitions).

To summarize, a sort of ‘elimination’ of existentially quantified variables is
essential for the purposes of this thesis. However, we already remarked that
quantifier elimination is usually not available in the DB theories we study. This
is the main reason we exploited the notion of model completions so as to retain
quantifier elimination. Hence, the ‘elimination of quantifiers’ that we perform in
the backward reachability procedure is not performed in the original DB theory T ,
but in its model completion T (that is unique, when it exists). Intuitively, given a
DB theory T , the model completion of T is the ‘minimal theory’ T ∗ (in the same
signature of T ) that extends T so as to get quantifier elimination. As a side remark,
we recall that when T admits quantifier elimination, then the model completion
of T coincides with T itself, so in this corner case the meaning of ‘minimal richer
theory than T ’ is clear: it is the theory T itself. One can give to the term ‘minimal’
here many interpretations (all follow from the definition): one of these is that T
and T ∗ have the same universal consequences (i.e., they entail the same universal
sentences). Another way for interpreting the model completion T ∗ as the ‘minimal
enrichment’ of T is given by the property that all models of T can be ‘enlarged’
to (more formally, embedded into) model of T ∗. This implies that satisfiability of
existential formulae in T and in T ∗ are equivalent problems.

The last facts are particularly interesting from the perspective of the model-
checking technique introduced in this chapter. The main idea emerging from the
proof of Theorem 4.2.1 is that detecting unsafe traces in models of T , which are
overall existential formulae, is the same problem as detecting unsafe traces in the
models of T ∗. Intuitively, this can be done by ‘lifting’ unsafe traces in aM model of
T a corresponding (extended) modelM′ of T ∗ into whichM embeds (by definition
of model completion): an unsafe trace in T is still an unsafe trace in T ∗. Since
all models of T ∗ are also models of T by definition (because T ⊆ T ∗), then it is
clear that an unsafe trace in a model M′ of T ∗ is in particular an unsafe trace
in a model M of T (i.e., M is exactly M′). Thus, detecting unsafety in T is
equivalent to detecting unsafety in T ∗: this is exactly the main intuition behind
the proof of Theorem 4.2.1, and we remark once again that this is true because
unsafe traces are existential formulae.
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A direct consequence of the discussion above is that whenever there exists an
unsafe trace in T , there also exists an unsafe trace in T ∗, and vice versa. Hence, when
we ‘eliminate quantifies’ via the subroutine QESAS(T ∗, φ) we are not performing any
approximation: the computed set of reachable states is not an over-approximation
as it happens when (ordinary) interpolation-based methods are employed, but is
exact, since it is the exact set of reachable states computed for a model trace that
lives in a model of T ∗ (instead of living in a model of T ).

In Part II we will see that eliminating quantifiers in model completions is
equivalent to computing uniform interpolants, or (using an equivalent nomenclature)
covers. We reveal this fact in advance in order to state the important moral
conclusion of this paragraph: when computing ordinary interpolants, it is well-known
that preimages are not exact and the set of reachable states is over-approximated.
In contrast, when computing uniform interpolants, preimages are exact and no
approximation of the set of reachable states is performed.

4.7.2 Freshness and Related Approaches
It is important to stress that the Array-Based Artifact Systems we introduced in this
chapter are radically different from other formal models integrating dynamics with
data, such as Data Petri Nets [Laz+08], ν-PNs [RVFE11] and multiset rewriting
systems with data and constraints [Del02]. Let us consider Data Petri Nets as a
representative example of this class of approaches.

In Data Petri Nets, one can generate tokens that carry fresh values not already
present in the current marking. The requirement that a value is fresh can be
encoded in the model [RVFE11]. Such values can only be mutually related using
the comparison predicates over the underlying domain. In the context of artifact
systems, there are different types of freshness that can be studied: a ‘global’ version
and a ‘local’ version. The former concerns both the read-only database and the
working memory, while the latter only considers the working memory. Only local
freshness can be reasonably compared with the notion of freshness in Data Petri Nets:
indeed, Data Petri Nets and related approaches do not contemplate any persistent
storage (i.e., read-only databases) in their models; in contrast, the ‘current marking’
of a Petri net-based formalism can be related to the ‘current state’ of the U-RAS
working memory, as we will see in Chapter 12.

We briefly argue why freshness is in general problematic in Array-based Artifact
Systems. In this setting, the working memory may contain data elements arbitrarily
taken from value sorts, or extracted from the (active domain of the) read-only
database. When loading a data element from a value sort, this may or not be
present in the active domain, and it may be possibly fresh in the global sense,
i.e., different from all the values present in the active domain and in the current
configuration of the working memory: notice that proper global freshness cannot be
expressed in U-RASs, since this feature would require to use some sort of universal
quantification ranging over the active domain of the read-only DB instance. In
contrast, local freshness requires injecting some element taken from the values sorts
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or the (active domain of the) read-only database that is different from all the other
elements currently present in the working memory. In the case of SASs, this can be
trivially done, since the working memory only consists of a fixed number of artifact
variables. In the case of RASs, this is not possible anymore: checking local freshness
would require employing guards that inspect the content of all the tuples in each
artifact relation (which are in principle finite but unbounded), and this check cannot
be performed if only existential quantifiers over indexes are allowed. However, this
check becomes possible in U-RASs, thanks to the presence of universal guards: it is
sufficient to pick up an element that is different from all the elements contained
in any location of the artifact components. To sum up, local freshness can be
enforced in U-RASs: we will see in Chapter 12 that U-RASs can be employed to
successfully model and verify interesting extensions of Data Petri Nets. As one
can expect, U-RASs are significantly more expressive than RASs, but when we
use them we pay the price of losing the soundness of our verification machinery,
because of the possible presence of spurious unsafe traces.

We conclude the section by pointing out why the notion of model completion
we used in this chapter is radically different from the one of ‘enlarging models with
fresh values’. When loading data elements from the read-only DB, it is crucial
to consider that they are mutually related via constraints present therein. These
constraints are primary keys, foreign keys, and additional axioms present in the
DB theory. The read-only DB is fixed within a run, but model checking of safety
properties is studied parametrically with respect to all possible read-only DBs over
a given schema. During model checking, we are examining sets of reachable states
described by logical formulae, whose validity depends on properties that might
happen to be true in the read-only DB, depending on the constraints present therein.
To handle data elements coming from the read-only DB and their corresponding
constraints, we therefore need a specialized machinery that is different from the one
typically used to tame the infinity brought by freshness. In fact, it is not enough
to embed the read-only DB in a larger model that admits fresh values to obtain
quantifier elimination, which is essential in our model checking algorithm. Quantifier
elimination becomes available only when such a “larger model” possesses suitable
model-theoretic properties, which we have studied in Section 4.1. In particular, we
have argued that such properties are captured by the well-known model-theoretic
notion of existentially closed structure and its intimately related notion of model
completion. Notably, resorting to model completion can be seen as the “most natural”
way to obtain quantifier elimination, as it is the “closest” theory to the original one
that at once admits quantifier elimination and preserves satisfiability of existential
formulae. This is precisely what we intensively exploit in our verification algorithm.
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In this chapter, we study how to guarantee termination of the backward
reachability procedures defined in the previous chapters. Since both BReachSAS
and BReachRAS have been proved to be semi-decision procedures for detecting
safety of SASs and (plain) RASs respectively, termination would also ensure, in
turn, that they are full decision procedures. However, termination is in general a
difficult problem to achieve, since array-based systems are not always well-structured
transition systems [Abd+96], and in the most general cases the safety problem
for them is undecidable: see, for instance, the undecidable case of Universal RASs
discussed in Section 12.3.6, or the general case of [GR10a].
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In Section 5.1, we prove that the backward reachability procedure is guaranteed
to terminate when applied to a safety problem involving a SAS with an acyclic DB
signature (see Section 3.1 for the formal definition of acyclicity). This is achieved
by strongly exploiting the quantifier elimination algorithm executed at each step
of the main loop of the backward search. The idea behind this is that, thanks
to this quantifier elimination algorithm, the number of variables of the involved
formulae remains fixed: this implies that, since the DB signature is acyclic, the
number of possible formulae (over a fixed number of variables) to consider during
the backward search is bounded, hence this search is forced to terminate. This shows
the decidability of the safety problem when acyclic SASs are concerned.

In Section 5.2, we exploit an argument based on well-quasi-orders (wqos) in
order to prove the termination of backward search for safety problems involving
two specific classes of plain RASs. These two classes of RASs present orthogonal
features: the first one, called “RASs with Local Updates” (or, simply, “Local
RASs”), restricts the syntax of transition formulae but only imposes that the DB
signature is acyclic (as in the case of SASs); the second one, called “RASs with
Tree-like Signatures” (or, simply, “Tree-like RASs”), does not pose restrictions on
the syntactic format of the logical formulae of the system, but dictates that the
(artifact setting over the) DB signature has a more restrictive shape, i.e., it is a tree.
Both cases are sufficiently expressive to capture interesting and concrete data-aware
process models: specifically, the first one is powerful enough to incorporate the
model of [LDV17]. The main results of this chapter, that is termination for RASs
with Local Updates and for RASs with Tree-like Signatures, are respectively stated
in Subsections 5.2.1 and 5.2.3, and proved in the respective subsequent subsections.
We also provide in Subsections 5.2.2 and 5.2.4 two detailed examples of business
processes that are respectively expressed as a RAS with Local Updates and a RAS
with Tree-like Signature. Moreover, in Section 5.3 we analyze several types of
updates and their corresponding encoding into transition formulae, discussing also
in which cases termination is guaranteed. We conclude the chapter by comparing
the main features of RASs with the related approaches (Section 5.4).

5.1 Termination Result for SASs

In this section, we prove that in case of a SAS S := 〈Σ, T, x, ι, τ〉, where 〈Σ, T 〉 is a
(standard) DB schema and Σ is acyclic, backward search BReachSAS is guaranteed
to terminate, and hence it is a full decision procedure for the safety problems
of acyclic SASs.

Theorem 5.1.1. if Σ is acyclic, BReachSAS terminates and decides the safety
problems for S in Pspace in the combined size of x, ι, and τ .
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Proof. In case Σ is acyclic, there are only finitely many quantifier-free formulae
(in which the finite set of variables x occur), so it is evident that the algorithm
must terminate: because of (4.3), the unsatisfiability test of Line 2 must eventually
succeed, if the unsatisfiability test of Line 3 never does so.

Concerning complexity, we need to modify Algorithm 1 (we make it nondeter-
ministic and use Savitch’s Theorem saying that PSPACE = NPSPACE).

Since Σ is acyclic, there are only finitely many terms involving a single variable,
let this number be kΣ (we consider T,Σ and hence kΣ constant for our problems).
Then, since all function symbols are unary, it is clear that we have at most 2O(n2)

conjunctions of sets of literals involving at most n variables and that if the system
is unsafe, unsafety can be detected with a run whose length is at most 2O(n2).
Thus we introduce a counter to be incremented during the main loop (lines 2-6)
of Algorithm 1. The fixpoint test in line 2 is removed and loop is executed only
until the maximum length of an unsafe run is not exceeded (we remark that an
exponential counter requires polynomial space).

Inside the loop, line 4 is removed (we do not need anymore the variable B) and
line 6 is modified as follows. We replace line 6 of the algorithm by

6′. φ←− α(x);

where α is a non-deterministically chosen conjunction of literals implying QE(T ∗, φ).
Notice that to check the latter, there is no need to compute QE(T ∗, φ): recalling the
proof of Proposition 4.6.3 and Remark 4.6.3 it is sufficient to check that T |= α→ C

holds for every clause C(x) such that T |= φ→ C.
The algorithm is now in PSPACE, because all the satisfiability tests we need are,

as a consequence of the proof of Proposition 4.6.1, in NP: all such tests are reducible
to T -satisfiability tests for quantifier-free Σ-formulae involving the variables x and
the additional (skolemized) quantified variables occurring in the transitions 1. In
fact, all these satisfiability tests are applied to formulae whose length is polynomial
in the size of x, of ι and of τ .

Remark 5.1.1. We highlight that the proof of the decidability result of Theo-
rem 5.1.1 requires that the considered background theory T : (i) admits a model
completion; (ii) is locally finite, i.e., up to T -equivalence, there are only finitely
many atoms involving a fixed finite number of variables (this condition is implied by
acyclicity); (iii) is universal; and (iv) enjoys decidability of constraint satisfiability.
Conditions (iii) and (iv) imply that one can decide whether a finite structure
is a model of T . If (ii) and (iii) hold, it is well-known that (i) is equivalent to
amalgamation [Whe76],[Lip82]. Moreover, (ii) alone always holds for relational
signatures and (iii) is equivalent to T being closed under substructures (this
is a standard preservation theorem in model theory [CK90]). It follows that

1For the test in line 3, we just need replace in φ the x by their values given by ι, conjoin
the result with all the ground instances of the axioms of T and finally decide satisfiability with
congruence closure algorithm of a polynomial size ground conjunction of literals.



112 5.2. Termination Results for RASs

arbitrary relational signatures (or locally finite theories in general, even allowing
n-ary relation and n-ary function symbols) require only amalgamability and closure
under substructures. We also recall that every existential formula φ(x, x′) can be
turned into the form of Formula (3.4). Finally, we notice that thanks to all the
previous observations Theorem 5.1.1 is reminiscent of an analogous result in [BST13],
i.e., Theorem 5, the crucial hypotheses of which are exactly amalgamability and
closure under substructures, although the setting in that paper is different (there,
key dependencies are not discussed, whereas we are interested only in DB (extended-
)theories). We will come back to this remark in case of symbolic transition systems
in Section 7.2, when we will state Theorem 7.2.1.

5.2 Termination Results for RASs
Theorem 4.3.2 gives a semi-decision procedure for unsafety: if the system is unsafe,
the procedure discovers it, but if the system is safe, the procedure (still correct)
may not terminate. Termination is much more difficult to achieve for RASs,
since acyclicity of Σ seems not to be sufficient to guarantee it. We present two
termination results for RASs, both obtained via the use of well quasi-orders. The
strategy for proving termination consists of isolating sufficient conditions that imply
that the embeddability relation between DB instances is a well-quasi-ordering.
Since there is no guarantee that this fact holds in general, RASs are not well-
structured transition systems.

5.2.1 Termination with Local Updates
Consider an acyclic signature Σ, a theory T (satisfying our Assumption 4.1.1),
and an artifact setting (x, a) over an artifact extension Σext of Σ. We call a state
formula local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧
∧k
i=1 φi(ei, x, a)), (5.1)

and strongly local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧ ψ(x) ∧ ∧ki=1 φi(ei, a)). (5.2)

In (5.1) and (5.2), δ is a conjunction of variable equalities and disequalities, φi, ψ
are quantifier-free, and e1, . . . , ek are individual variables varying over artifact sorts.
The key expressivity limitation of local state formulae is that they cannot compare
entries belonging to different tuples of artifact relations: in fact, each φi in (5.1)
and (5.2) can contain only the existentially quantified variable ei.

A transition formula tr is local (resp., strongly local) if whenever a formula φ
is local (resp., strongly local), so is Pre(tr, φ) (modulo the axioms of T ∗).

We now state the first main result of this section, which will be proved in
the following subsection:
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Theorem 5.2.1. If Σ is acyclic, backward search (cf. Algorithm 1) terminates when
applied to solve the safety problem, with respect to a (strongly) local unsafe formula
υ(x, a), for a RAS 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉, where τ is a disjunction of
(strongly) local transition formulae.

In Theorem 5.2.1 we show that (for acyclic Σ) Algorithm 1 terminates when
applied to a local unsafe formula in a RAS whose τ is a disjunction of local transition
formulae. Note that Theorem 5.2.1 can be used to reconstruct (restricted to safety
problems) the essence of the decidability results of [LDV17]. Specifically, it can
be shown by a direct computation that transitions in [LDV17] are strongly local
which, in turn, can be shown using quantifier elimination (see Section 5.3) for all
the details, where we also show how to represent transitions from [LDV17] by the
means of existentially quantified data variables). Interestingly, Theorem 5.2.1 can
be applied to more cases not covered in [LDV17]. For example, one can provide
transitions enforcing updates over unboundedly many tuples (bulk updates) that
are strongly local (cf. Section 5.3).

Theorem 5.2.1 covers also problems coming from a different source, like
coverability problems for broadcast protocols [EFM99; DEP99]: these problems can
be encoded using local formulae over the trivial one-sorted signature containing
just one basic sort, finitely many constants and one artifact sort with one artifact
component. We remark that coverability for broadcast protocols can be decided
with a non-primitive recursive lower bound [SS13]; this proves that our framework
is quite expressive (the problems in [LDV17] have for instance an ExpSpace upper
bound). Recalling that [LDV17] handles verification of LTL-FO, thus going beyond
safety problems, this shows that the two settings are incomparable. Finally, we
highlight that Theorem 5.2.1 implies also the decidability of the safety problem
for SASs, in case of Σ acyclic.

5.2.2 Proof of Theorem 5.2.1 and an Example of (Strongly)
Local RAS

Before proving Theorem 5.2.1, we need to recall some basic facts about well-quasi-
orders. Recall that a well-quasi-order (wqo) is a set W endowed with a reflexive-
transitive relation ≤ having the following property: for every infinite succession

w0, w1, . . . , wi, . . .

of elements from W there are i, j such that i < j and wi ≤ wj The fundamental
result about wqo’s is the following theorem, which is a recursive version of
Higman’s lemma [Hig52] and is a special case of the well-known Kruskal’s Tree
Theorem [Kru60]:

Theorem 5.2.2. If (W,≤) is a wqo, then so is the partial order of the finite lists
over W , ordered by componentwise subword comparison (i.e. w ≤ w′ iff there is a
subword w0 of w′ of the same length as w, such that the i-th entry of w is less or
equal to—in the sense of (W,≤)—the i-th entry of w0, for all i = 0, . . . |w|).
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Various wqo’s can be recognized by applying the above theorem; in particular,
the theorem implies that the cartesian product of wqo’s is a wqo. As an application,
notice that N is a wqo, hence the following corollary (known as Dickson’s Lemma)
follows:

Corollary 5.2.3. The cartesian product of k-copies of N (and also of N ∪ {∞}),
with componentwise ordering, is a wqo.

Let Σ̃ be Σext ∪ {a, x}, that is, Σext expanded with function symbols a and
constants x (thus, a Σ̃-structure is a Σext-structure endowed with an assignment
to x and a, which were variables and now are treated as symbols of Σ̃). For the
following, we need the following definition:

Definition 5.2.1. A Σ̃-structureM is called cyclic2 if it is generated by a single
element e ∈ EM (called generator ofM), where E is an artifact sort (i.e. e belongs
to the interpretation of an artifact sort E).

The previous definition intuitively means that all the elements of the cyclic
structures are obtained from the generator by applying the function symbols
of Σ̃ to the generator.

Since Σ is acyclic, so is Σ̃, and then one can show that there are only finitely
many cyclic Σ̃-structures C1, . . . , CN up to isomorphism. With a Σ̃-structure M
we associate the tuple of numbers k1(M), . . . , kN(M) ∈ N ∪ {∞} counting the
numbers of elements generating (as singletons) cyclic substructures isomorphic
to C1, . . . , CN , respectively.

Now, we show that, if the tuple associated withM is component-wise bigger than
the one associated with N , thenM satisfies all the local formulae satisfied by N .

Lemma 5.2.4. LetM,N be Σ̃-structures. If the inequalities

k1(M) ≤ k1(N ), . . . , kN(M) ≤ kN(N )

hold, then all local formulae true inM are also true in N .

Proof. Local formulae (viewed in Σ̃) are sentences, because they do not have free
variable occurrences - the a, x are now constant function symbols and individual
constants, respectively. The proof of the lemma is fairly obvious: notice that,
once we assigned some α(ei) inM to the variable ei, the truth of a formula like
φ(ei, x, a) under such an assignment depends only on the Σ̃-substructure generated
by α(ei), because φ is quantifier-free and ei is the only Σ̃-variable occurring in it.
In fact, if a local state formula ∃e1 · · · ∃ek

(
δ(e1, . . . , ek) ∧

∧k
i=1 φi(ei, x, a)

)
is true

inM, then there exist elements ē1, · · · , ēk (in the interpretation of some artifact
sorts), each of which makes φi true. Hence, φi is also true in the corresponding
cyclic structure generated by ēi. Since k1(M) ≤ k1(N ), . . . , kN (M) ≤ kN (N ) hold,

2This is unrelated to cyclicity of Σ defined in Section 3.1, and comes from universal algebra
terminology.
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then also in N there are at least as many elements in the interpretation of artifact
sorts as there are inM that validate all the φi . Thus, we get that the formula
∃e1 · · · ∃ek

(
δ(e1, . . . , ek) ∧

∧k
i=1 φi(ei, x, a)

)
is true also in N , as wanted.

Now we are ready to prove our first termination and decidability result.

Theorem 5.2.1. If Σ is acyclic, backward search (cf. Algorithm 1) terminates when
applied to solve the safety problem, with respect to a (strongly) local unsafe formula
υ(x, a), for a RAS 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉, where τ is a disjunction
of (strongly) local transition formulae.

Proof. Suppose the algorithm does not terminate. Then the fixpoint test of Line 2
fails infinitely often. Recalling that the T -equivalence of Bn and of ∨0≤k<n φk is an
invariant of the algorithm (here φn, Bn are the status of the variables φ,B after n
execution of the main loop), this means that there are models

M0,M1, . . . ,Mj, . . .

such that for all j, we have thatMj |= φj andMj 6|= φi (all i < j). But the φj are
all local formulae, so considering the tuple of cardinals k1(Mj), . . . , kN(Mj) and
Lemma 5.2.4, we get a contradiction, in view of Dickson’s Lemma. This is because,
by Dickson’s Lemma, (N ∪ {∞})N is a wqo, so there exist i, j such that i < j and
k1(Mi) ≤ k1(Mj), . . . , kN(Mi) ≤ kN(Mj). Using Lemma 5.2.4, we get that φi,
which is local and true inMi, is also true inMj, which is a contradiction.

Example 5.2.9

We now present a shorter version of Example 3.2.6, and we then notice that all
the transitions of this version are strongly local.

We transform again the SAS of Example 3.2.5 into a RAS S̃hr containing a
multi-instance artifact accounting for the evolution of job applications. Each
job category may receive multiple applications from registered users. Such
applications are then evaluated, finally deciding which are accepted and which
are rejected.

As for the read-only DB, S̃hr works over the DB schema of Example 3.1.3,
extended, as in Example 3.2.6, with a further value sort Score used to score job
applications.

As for the working memory, S̃hr consists of two artifacts: the single-instance
job hiring artifact tracking the three main phases of the overall process (and
described in Example 3.2.5), and a multi-instance artifact accounting for
the evolution of user applications. To model applications, we take the DB
signature Σhr of the read-only database of human resources, and enrich it with
an artifact extension containing an artifact sort appIndex used to index (i.e.,
“internally” identify) job applications. The management of job applications is
then modeled by an artifact setting with: (i) artifact components with domain
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appIndex capturing the artifact relation that stores the different job applications;
(ii) additional individual variables as a temporary memory to manipulate the
artifact relation. Specifically, each application consists of a job category, the
identifier of the applicant user and that of an HR employee responsible for
the application, the application score, and the final result (indicating whether
the application is among the winners or the losers for the job offer). These
information slots are encapsulated into dedicated artifact components, i.e.,
function variables with domain appIndex that collectively realize the application
artifact relation:

appJobCat : appIndex −→ JobCatId
applicant : appIndex −→ UserId
appResp : appIndex −→ EmpId
appScore : appIndex −→ Score
appResult : appIndex −→ String

We now discuss the relevant transitions for inserting and evaluating job
applications. The insertion of an application into the system can be executed
when the hiring process is enabled (cf. Example 3.2.5), and consists of two
consecutive steps. To indicate when a step can be applied, also ensuring that the
insertion of an application is not interrupted by the insertion of another one, we
manipulate a string artifact variable aState. The first step is executable when
aState is undef, and aims at loading the application data into dedicated artifact
variables through the following simultaneous effects: (i) the identifier of the
user who wants to submit the application, and that of the targeted job category,
are selected and respectively stored into variables uId and jId; (ii) the identifier
of an HR employee who becomes responsible for the application is selected and
stored into variable eId, with the requirement that such an employee must be
competent in the job category targeted by the application; (iii) aState evolves
into state received. Formally:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId
pState = enabled ∧ aState = undef
∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef
∧ who(c) = e ∧ what(c) = j
∧ pState′ = enabled ∧ aState′ = received
∧ uId ′ = u ∧ jId ′ = j ∧ eId ′ = e ∧ cId ′ = c


(5.3)

The second step transfers the application data into the application artifact
relation, using its corresponding function variables, at the same time resetting
all application-related artifact variables to undef (including aState, so that new
applications can be inserted). For the insertion, a “free” index (i.e., an index
pointing to an undefined applicant) is picked. The newly inserted application
gets a default score of -1 (thus initializing it to “not eligible”), while the final
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result is undef:

∃i:appIndex

pState = enabled ∧ aState = received
∧ applicant[i] = undef
∧ pState′ = enabled ∧ aState′ = undef ∧ cId ′ = undef
∧ appJobCat ′ = λj. (if j = i then jId else appJobCat[j])
∧ applicant ′ = λj. (if j = i then uId else applicant[j])
∧ appResp′ = λj. (if j = i then eId else appResp[j])
∧ appScore′ = λj. (if j = i then -1 else appScore[j])
∧ appResult ′ = λj. (if j = i then undef else appResult[j])
∧ jId ′ = undef ∧ uId ′ = undef ∧ eId ′ = undef


Such a transition does not prevent the possibility of inserting exactly the same
application twice, at different indexes. If this is not wanted, the transition can
be suitably changed so as to guarantee that no two identical applications can
coexist in the same artifact relation, as in Example 3.2.6.

Each application currently considered as not eligible can be made eligible
by assigning a proper score to it:

∃i:appIndex, s:Score(
pState = enabled ∧ appScore[i] = -1 ∧ s ≥ 0
∧ pState′ = enabled ∧ appScore′[i] = s

)

Finally, application results are computed when the process moves to state
notified. This is handled by the bulk transition:

pState = enabled ∧ pState′ = notified

∧ appResult ′ = λj.

(
if appScore[j] > 80 then winner
else loser

)

which declares applications with a score above 80 as winning, and the others
as losing.

By inspecting the transitions of this example, one can see that all of them
are strongly local. Consequently, it is decidable to check safety of local state
formulae. For example, we show that the first transition is strongly local:
the computations for all the other transitions are analogous, and all these
computations and the details about the format of transitions that are (strongly)
local can be found in Section 5.3.

The first transition represents the first step of the insertion of an application
into the system. For simplicity, we can rewrite Formula 5.3 into the following
equivalent but more succinct formula:

∃d
(
π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ (x′1 := x1 ∧ x′2 := d ∧ a′ := a)

)
(5.4)

where d := 〈d1, d2, u, j, e, c〉, x1 are the artifact variables of the system
that are not updated, x2 are the artifact variables of the system that are
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updated, π(x1, x2) and ψ(d) are quantifier-free Σ-formulae and a are the artifact
components of the systems.

We show that the preimage along (5.4) of a strongly local formula is strongly
local.

Given a strongly local state formula φ, we can easily suppose that φ has the
following format:

φ := ψ′(x) ∧ ∃i (AllDiff(i) ∧Θ(a))

where x are all the artifact variables of the system, i are variables of artifact
sorts and Θ is a formula involving all the artifact components a.

We compute the preimage Pre(5.4, φ):

∃d

π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received
∧ (x′1 := x1 ∧ x′2 := d ∧ a′ := a)
∧ ψ′(x′) ∧ ∃i (AllDiff(i) ∧Θ(a′))

 (5.5)

which can be rewritten as follows:

∃d
(
π(x1, x2) ∧ ψ(d) ∧ d1 = enabled ∧ d2 = received

∧ ψ′(x1, d) ∧ ∃i (AllDiff(i) ∧Θ(a))

)
(5.6)

Now, we can move the existential quantifier ∃d in front of χ(d, x1) :=
(ψ(d) ∧ d1 = enabled ∧ d2 = received ∧ ψ′(x1, d)). We eliminate the
quantifiers (applying the quantifier elimination procedure for T ∗) from the
subformula ∃d(χ(d, x1)) obtaining a formula of the kind θ(x1).

The final result is

π(x1, x2) ∧ θ(x1) ∧ ∃i (AllDiff(i) ∧Θ(a)) (5.7)

which is a strongly local formula.
Also the transitions of the hiring process from Example3.2.6 are, in their

current form, strongly local, with the exception of those operating over artifact
relations in a way that ensures no repeated entries are inserted. Such transitions
can be turned into strongly local ones if repetitions in the artifact relations are
allowed. That is, multiple identical job offers and applications can be inserted
in the corresponding relations, using different indexes. This approach realizes a
sort of multiset semantics for artifact relations.

The interested reader can find additional details about applications of
(strongly) local RASs to data-aware business processes in Section 5.3. Specifi-
cally, this section contains a running example (verified against several properties)
that can be represented using a RAS that is strongly-local.

5.2.3 Termination with Tree-like Signatures

Σ is tree-like if it is acyclic and all non-leaf nodes have outdegree 1. An artifact setting
over Σ is tree-like if Σ̃ := Σext∪{a, x} is tree-like. In tree-like artifact settings, artifact
relations have a single “data” component, and basic relations are unary or binary.
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We first state the second main result of this section, that will be proved in
the following subsection.

Theorem 5.2.5. Backward search (cf. Algorithm 1) terminates when applied to a
safety problem in a RAS with a tree-like artifact setting.

5.2.4 Proof of Theorem 5.2.5 and an Example of Tree-Like
RAS

Proving termination for RAS with a tree-like artifact setting is more complex, but
follows a similar schema as in the case of local transition formulae.

If (W,≤) is a partial order, we consider the set M(W ) of finite multisets of
W as a partial order in the following way:3 say that M ≤ N holds iff there is an
injection p : M −→ N such that m ≤ p(m) holds for all m ∈M (in other words, p
associates with every occurrence of an element m of M an occurrence p(m) of an
element of N such that p(m) ≥ m - this is moreover done injectively, i.e. in such
a way that different occurrences are associated to different occurrences).

Corollary 5.2.6. If (W,≤) is a wqo, then so is (M(W ),≤) as defined above.

Proof. This is due to the fact that one can convert a multiset M to a list L(M) so
that if L(M) ≤ L(N) holds, then also M ≤ N holds (such a conversion L can be
obtained by ordering the occurrences of elements in M in any arbitrarily chosen
way).

We assume that the graph G(Σ̃) associated to Σ̃ is a tree (the generalization
to the case where such a graph is a forest is trivial). This means in particular
that each sort is the domain of at most one function symbol and that there just
one sort which is not the domain of any function symbol (let us call it the root
sort of Σ̃ and let us denote it with Sr).

By induction on the height of a sort S (defined as the length of the longest
path from S to a leaf) in the above graph, we define a wqo w(S) (in the definition
we use the fact the cartesian product of wqo’s is a wqo and Corollary 5.2.6). Let
S1, . . . , Sn be the sons of S in the tree; put

w(S) := M(w(S1))× · · · ×M(w(Sn)) (5.8)

(thus, if S is a leaf, w(S) is the trivial one-element wqo - its only element is
the empty tuple).

Let nowM be a finite Σ̃-structure; we indicate with SM the interpretation in
M of the sort S (it is a finite set). For a ∈ SM, we define MM(a) ∈ w(S), again by

3This is not the canonical ordering used for multisets, as introduced, e.g., in [BN98].
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induction on the height of S. Suppose that S1, . . . , Sn are the sons of S and that
the arc from Si to S is labeled by the function symbol fi; then we put

MM(a) := 〈{MM(b1) | b1 ∈ SM1 and fM1 (b1) = a}, . . .
. . . , {MM(bn) | bn ∈ SMn and fMn (bn) = a}〉

where fMi (i = 1, . . . , n) is the interpretation of the symbol fi in M.
Moreover, for every sort S, we let

MM(S) := {MM(a) | a ∈ SM} . (5.9)

Finally, we define

M(M) := MM(Sr) . (5.10)

For termination, the relevant lemma is the following:

Lemma 5.2.7. Suppose that Σ̃ is tree-like and does not contain constant symbols;
given two finite Σ̃-structuresM and N , we have that if M(M) ≤M(N ), thenM
embeds into N . As a consequence, the finite Σ̃-structures are a wqo with respect
to the embeddability quasi-order.

Proof. Again, we make an induction on the height of S, proving the claim for the
subsignature of Σ̃ having S as a root (let us call this the S-subsignature).

LetM be a model over the S-subsignature. For every a ∈ SM, and for every
fi : Si −→ S, if we restrictM to the elements in the fi-fibers of a, we get a model
Mfi,a for the Si-subsignature (an element c ∈ S̃M is in the fi-fiber of a if, taking
the term t corresponding to the composition of the functions symbols going from S̃

to Si, we have that fMi (tM(c)) = a). In addition, if MM(a) = (M1, . . . ,Mn), then
Mi = M(Mfi,a) by definition. Finally, observe that the restriction of M to the
Si-subsignature is the disjoint union of the fi-fibers modelsMfi,a, varying a ∈ SM.

Suppose now thatM,N are models over the S-subsignature such thatM(M) ≤
M(N ); this means that we can find an injective map µ mapping SM into SN so that
MM(a) ≤ MN (µ(a)). If MM(a) = (M1, . . . ,Mn) and MN (µ(a)) = (N1, . . . , Nn),
we then have that Mi ≤ Ni for every i = 1, . . . , n. Considering that, as noticed
above, Mi =Mfi,a and Ni = Nfi,µ(a), by induction hypothesis, we have embeddings
νi,a for the fi-fibers models of a and µ(a) (for every a ∈ SM and i = 1, . . . , n).
Glueing these embeddings to the disjoint union (varying i, a) and adding them µ as
S-component, we get the desired embedding ofM into N .

Theorem 5.2.5. Backward search (cf. Algorithm 1) terminates when applied to
a safety problem in a RAS with a tree-like artifact setting.
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Proof. For simplicity, we start giving the argument for the case where we do not
have constants and artifact variables. Similarly to the proof of Theorem 5.2.1,
suppose the algorithm does not terminate. Then the fixpoint test of Line 2 fails
infinitely often. Recalling that the T -equivalence of Bn and of ∨0≤k<n φk is an
invariant of the algorithm (here φn, Bn are the status of the variables φ,B after n
execution of the main loop), this means that there are models

M0,M1, . . . ,Mj, . . .

such that for all j, we have thatMj |= φj andMj 6|= φi (all i < j). The models can
be taken to be all finite, by Lemma 4.5.3. But the φj are all existential sentences in
Σ̃, so this is incompatible to the fact that, by Lemma 5.2.7, there are i < j with
Mi embeddable intoMj.

Concerning the general case, it is sufficient to consider the following observation
that shows how to extend the proof to the case where we have constants and artifact
variables. Recall that in Σ̃ the artifact variables are seen as constants, so we need to
consider only the case of constants. Let Σ̃+ be Σ̃ where each constant symbol c of
sort S is replaced by a new sort Sc and a new function symbol fc : Sc −→ S. Now
every modelM of Σ̃ can be transformed into a modelM+ of Σ̃+ by interpreting Sc
as a singleton set {∗} and fc as the map sending ∗ to cM. This transformation has
the following property: Σ̃-embeddings ofM into N are in bijective correspondence
with Σ̃+-embeddings ofM+ into N+. Since Σ̃+ is still tree-like and does not have
constant symbols, this shows that Theorem 5.2.5 holds for Σ̃ too.

While tree-like RAS restrict artifact relations to be unary, their transitions are
not subject to any locality restriction. This allows for expressing rich forms of
updates, including general bulk updates (which allow us to capture non-primitive
recursive verification problems4) and transitions comparing at once different tuples in
artifact relations. The flight management process presented in the following example
shows these advanced features, with a tree-like RAS whose safety verification is
indeed decidable. Finally, notice that tree-like RASs are incomparable: (i) with
the “tree” classes of [BST13], since the former use artifact relations, whereas
the latter only individual variables; (ii) with the decidability class of [LDV17],
since tree-like RASs express transitions able to compare at once values stored in
different tuples in artifact relations.

Example 5.2.10

We consider a simple RAS that falls in the scope of the tree-like decidability
result. Specifically, this example has a tree-like artifact setting (see Figure 5.1),
thus assuring that, when solving the safety problem for it, the backward search
algorithm is guaranteed to terminate. Note, however, that the termination
result adopted here is the one of Theorem 5.2.5 due to the non-locality of certain

4The artifact setting described above to capture coverability problems for broadcast protocols
is both local and tree-like.
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transitions, as explained in detail below.
The flight management process represents a simplified version of a flight

management system adopted by an airline. To prepare a flight, the company
picks a corresponding destination (that meets the aviation safety compliance
indications) and consequently reports on a number of passengers that are going
to attend the flight. Then, an airport dispatcher may pick a manned flight
and put it in the airports flight plan. In case the flight destination becomes
unsafe (e.g., it was struck by a hurricane or the hosting airport had been
seized by terrorists), the dispatcher uses the system to inform the airline about
this condition. In turn, the airline notifies all the passengers of the affected
destination about the contingency, and temporary cancels their flights.

To formalize these different aspects, we make use of a DB signature Σfm
that consists of: (i) two id sorts, used to identify flights and cities; (ii) one
function symbol destination : FlightId −→ CityId mapping flight identifiers to
their corresponding destinations (i.e., city identifiers). Note that, in a classical
relational model (cf. Section 3.1.2), our signature would contain two relations:
one binary RFlightId that defines flights and their destinations, and another unary
RCityId identifying cities, that are referenced by RFlightId using destination.

We assume that the read-only flight management database contains data
about at least one flight and one city. To start the process, one needs at least
one city to meet the aviation safety compliances. It is assumed that, initially,
all the cities are unsafe. An airport dispatcher, at once, may change the safety
status only of one city.

We model this action by performing two consequent actions. First, we select
the city identifier and store it in the designated artifact variable safeCitytId:

∃c:CityId
(
c 6= undef ∧ safeCitytId = undef ∧ safeCitytId ′ = c

)
Then, we place the extracted city identifier into a unary artifact relation
safeCity : CityIndex −→ CityId, that is used to represent safe cities and where
CityIndex is its artifact sort.

∃i:CityIndex
safeCity[i] = undef ∧ safeCitytId 6= undef ∧ safeCitytId ′ = undef

∧ safeCity′ = λj.

if j = i then safeCitytId
else if safeCity[j] = safeCitytId then undef

else safeCity[j]




Note that the two previous transitions can be rewritten as a unique one,
hence showing a more compact way of specifying RAS transitions. This, in
turn, can augment the performance of the verifier while working with large-scale
cases. The unified transition actually looks as follows:
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∃c:CityId,∃i:CityIndex
c 6= undef ∧ safeCity[i] = undef

∧ safeCity′ = λj.

if j = i then c
else if safeCity[j] = c then undef

else safeCity[j]




Then, to register passengers with booked tickets on a flight, the airline
needs to make sure that a corresponding flight destination is actually safe. To
perform the passenger registration, the airline selects a flight identifier that
is assigned to the route and uses it to populate entries in an unary artifact
relation regdPassenger : PassengerIndex −→ FlightId. Note that there may be
more than one passenger taking the flight, and therefore, more than one entry
in regdPassenger with the same flight identifier.

∃i:CityIndex, f :FlightId, p:PassengerIndexf 6= undef ∧ destination(f) = safeCity[i] ∧ regdPassenger [p] = undef

∧ regdPassenger ′ = λj.

(
if j = p then f
else regdPassenger [j]

) 
We also assume that the airline owns aircraft of one type that can contain no

more than k passengers. In case there were more than k passengers registered on
the flight, the airline receives a notification about its overbooking and temporary
suspends all passenger registrations associated to this flight. This is modeled
by checking whether there are at least k + 1 entries in regdPassenger . If so, the
flight identifier is added to a unary artifact relation overbooked : FligthIndex −→
FlightId and all the passenger registrations in regdPassenger that reference this
flight identifier are nullified by updating unboundedly many entries in the
corresponding artifact relation:a

∃p1:PassengerIndex, . . . pk+1:PassengerIndex,m:FligthIndex
∧

i,i′∈{1,...,k+1},i6=i′ pi 6= pi′ ∧ regdPassenger [pi] 6= undef
∧ regdPassenger [pi] = regdPassenger [pi′ ] ∧ overbooked[m] = undef

∧ regdPassenger ′ = λj.

(
if regdPassenger [j] = regdPassenger [p1] then undef
else regdPassenger [j]

)
∧ overbooked ′[m] = regdPassenger [p1]


This transition is not local, since its guard contains literals of the form
regdPassenger [pi] = regdPassenger [pi′ ] (with pi 6= pi′), which involve more
than one element of one artifact sort.

In case of any contingency, the airport dispatcher may change the city status
from safe to unsafe. To do it, we first select one of the safe cities, make it unsafe
(i.e., remove it from safeCity relation) and store its identifier in the artifact
variable unsafeCityId:

∃i:CityIndex
(

unsafeCityId = undef ∧ safeCity[i] 6= undef ∧
∧ unsafeCityId ′ = safeCity[i] ∧ safeCity′[i] = undef

)
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CityId

FlightId

PassengerIndex FligthIndex

CityIndex

destination

overbookedregdPassenger

safeCity

Figure 5.1: A characteristic graph of the flight management process, where blue and
yellow boxes respectively represent basic and artifact sorts.

Then, we use the remembered city identifier to cancel all the passenger
registrations for flights that use this city as their destination:unsafeCityId 6= undef ∧ unsafeCityId ′ = undef ∧

∧ regdPassenger ′ = λj.

(
if destination(regdPassenger [j]) = unsafeCityId then undef
else regdPassenger [j]

)
Similarly to the previous case, this transition performs the intended action by
updating unboundedly many entries in the artifact relation.

Also in this case, we can shrink the last two transitions into a single transition:

∃i:CityIndex
safeCity[i] 6= undef ∧

∧ regdPassenger ′ = λj.

(
if destination(regdPassenger [j]) = safeCity[i] then undef
else regdPassenger [j]

)
However, as in the previous case, the transition turns out to be not local.

Specifically, it is due to the literal destination(regdPassenger [j]) = safeCity[i]
that involves more than one element of (different) artifact sorts.

aFor simplicity of presentation, we simply remove such data from the artifact relation. In
a real setting, this information would actually be transferred to a dedicated, historical table,
so as to reconstruct the status of past, overbooked flights.

5.3 Operations Representable as Strongly Local
Transitions

We now analyze in the current section how the transition formulae studied
in [LDV17]5 (deletion, insertion and propagation updates) can be lifted in the
context of RASs. In addition, we discuss some modifications of the previous
transitions and introduce new kinds of updates (like bulk updates). We prove that
all these transitions are strongly local transitions, hence, in view of Thereom 5.2.1,

5For simplicity, since we are not considering hierarchical aspects, we assume that there is no
input variable in the sense of [LDV17]
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the backward reachabilty procedure is guaranteed to terminate over a RAS employing
them, when run against a strongly local unsafe formula. For the following, fix an
acyclic signature Σ and an artifact setting (x, a) over it.

5.3.1 Deletion Updates
We want to remove a tuple t := (t1, ..., tm) from an m-ary artifact relation R
and assign the values t1, ..., tm to some of the artifact variables (let x := x1, x2,
where x1 := (xi1 , ..., xim) are the variables where we want to transfer the tuple t).
This operation has to be applied only if the current artifact variables x satisfy
the pre-condition π(x1, x2) and the updated artifact variables x′ := x′1, x

′
2 satisfy

the post-condition ψ(x′1, x′2) (π and ψ are quantifier-free formulae). The variables
x2 are not propagated, i.e. they are nondeterministically reassigned. Let r :=
r1, ..., rm be the artifact components of R. Such an update can be formalized
in a symbolic way as follows:

∃d∃e

 π(x1, x2) ∧ ψ(x′1, x′2) ∧ r1[e] 6= undef ∧ ...
∧ rn[e] 6= undef ∧ (x′1 := r[e] ∧ x′2 := d ∧ s′ := s ∧
∧ r′ := λj.(if j = e then undef else r[j]))

 (5.11)

where s are the artifact components of the artifact relations different from R. The
d are nondeterministically produced values for the updated x′2. In the terminology
of [LDV17], notice that no artifact variable is propagated in a deletion update.

In place of the condition r1[e] 6= undef ∧ ...∧ rn[e] 6= undef one can consider the
modified deletion update that is fired only if some (and not all) artifact components
are not undef, or even the case when the transition is fired if at least one artifact
component is not undef: the latter case can be expressed using a disjunction of
transitions τi that, instead of r1[e] 6= undef∧...∧ rn[e] 6= undef, involve only the literal
ri[e] 6= undef (for i = 1, ..., n). These modified deletion updates can be proved to be
strongly local transitions by using trivial adaptations of the arguments shown below.

The formula (5.11) is not in the format (3.7) but can be easily converted
into it as follows:

∃d∃e

 π(x1, x2) ∧ ψ(r[e], d) ∧ r1[e] 6= undef ∧ ...
∧ rn[e] 6= undef ∧ (x′1 := r[e] ∧ x′2 := d ∧ s′ := s ∧

∧ r′ := λj.(if j = e then undef else r[j]))

 (5.12)

We prove that the preimage along (5.12) of a strongly local formula is strongly
local. Consider a strongly local formula

K := ψ′(x) ∧ ∃e
Diff(e) ∧

∧
er∈e

φer(r[er]) ∧Θ


where Θ is a formula involving the artifact components s (which are not updated)
such that no er occurs in it.
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Remark 5.3.1. Notice that equality is the only predicate, so a quantifier-free
formula φ(e, a) involving a single variable e must be obtained from atoms of the
kind b[e] = b′[e] (for b, b′ ∈ a) by applying the Boolean connectives only: this is why
we usually display such a formula as φ(a[e]). In addition, since the source sorts of
the different artifact relations are different, we cannot employ the same variable
as argument of artifact components of different artifact relations: in other words,
we cannot employ the same variable e in terms like ri[e] and sj[e], in case ri and
sj are components of two different artifact relation R and S (because e must have
either type R or type S). Thus, the quantifier-free subformula φi(a[ei]) in a local
formula involving only the variable ei must be of the kind φi(r[ei]), for some artifact
relation R (here r are the artifact components of R). These observations will be
often used in the sequel.

We compute the preimage Pre(5.12, K)

∃d∃e, e∃x′1, x′2 ∃r′
 π(x1, x2) ∧ ψ(r[e], d) ∧ ψ′(x′1, x′2) ∧
∧ x′1 := r[e] ∧ x′2 := d ∧ Diff(e) ∧ ∧

er∈e φer(r′[er]) ∧
∧ r′ := λj.(if j = e then undef else r[j]) ∧Θ


which can be rewritten as a disjunction of the following formulae:

1. ∃d∃e, e
(
Diff(e, e) ∧ π(x1, x2) ∧ ψ(r[e], d) ∧
∧ ψ′(r[e], d) ∧ ∧

er∈e φer(r[er]) ∧ Θ

)
covering the case where e is different from all ej ∈ e

2. ∃d∃e
(
Diff(e) ∧ π(x1, x2) ∧ ψ(r[ej], d) ∧ ψ′(r[ej], d) ∧
∧ ∧

er∈e,er 6=ej
φer(r[er]) ∧ φej

(undef) ∧Θ

)
covering the case where e = ej, for some ej ∈ e

We can now move the existential quantifier ∃d in front of ψ ∧ ψ′. We
eliminate the quantifiers (applying the quantifier elimination procedure for T ?)
from the subformula ∃d (ψ(r[e], d) ∧ ψ′(r[e], d)) (or ∃d (ψ(r[e], d) ∧ ψ′(r[e], d)), resp.)
obtaining a formula of the kind θ(r[e]) (or θ(r[ej]).

The final result is the disjunction of the formulae
1. ∃e, e

(
Diff(e, e) ∧ π(x1, x2) ∧ θ(r[e]) ∧ ∧

er∈e φer(r[er]) ∧ Θ
)

2. ∃e
(
Diff(e) ∧ π(x1, x2) ∧ θ(r[ej]) ∧
∧∧er∈e,er 6=ej

φer(r[er]) ∧ φej
(undef) ∧ Θ

)
which is a strongly local formula.

Analogous arguments show that:

(i) transitions like Formula (5.11), where the literals r1[e] 6= undef ∧ ... ∧ rn[e] 6=
undef are replaced with a generic constraint χ(r[e]);

(ii) transitions that remove a tuple from an artifact relation (without transferring
its values to the corresponding artifact variables);

(iii) transitions that copy the the content of a tuple contained in an artifact relation
to some artifact variables, non-deterministically reassigning the values of the
other artifact variables;
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(iv) transitions that combine (i) and (iii)

are also strongly local.

Remark 5.3.2. Deletion updates with the propagation of some artifact variables
x1 (which are not allowed in [LDV17] and in [DLV16]) are not strongly local,
since the preimage of a strongly local formula can produce formulae of the form
ψ(r[e], x1). This preimage is still local: however, the preimage of a local state
formula through a deletion update can generate formulae of the form ψ(r[e], r[e′]),
with e 6= e′, destroying locality. Hence, the safety problem for a RAS containing
deletion updates with propagation in its transitions, is not guaranteed to terminate.

5.3.2 Insertion Updates

We want to insert a tuple of values t := (t1, ..., tm) from the artifact variables
x1 := (xi1 , ..., xim) (let x := x1, x2 as above) into an m-ary artifact relation R.
This operation has to be applied only if the current artifact variables x satisfy
the pre-condition π(x1, x2) and the updated artifact variables x′ := x′1, x

′
2 satisfy

the post-condition ψ(x′1, x′2). The variables x are all not propagated, i.e. they are
nondeterministically reassigned. Let r := r1, ..., rm be the artifact components of
R. Such an update can be formalized in a symbolic way as follows:

∃d1, d2 ∃e

 π(x1, x2) ∧ ψ(x′1, x′2) ∧ r[e] = undef
∧ (x′1 := d1 ∧ x′2 := d2 ∧ s′ := s ∧
∧ r′ := λj.(if j = e then x1 else r[j]))

 (5.13)

where s are the artifact components of the artifact relations different from R. The
d1, d2 are nondeterministically produced values for the updated x′1, x

′
2. In the

terminology of [LDV17], no artifact variable is propagated in a insertion update.
Notice that the following arguments remain the same even if r[e] = undef is replaced
with a conjunction of some literals of the form rj[e] = undef, for some j = 1, ...,m,
or even if r[e] = undef is replaced with a generic constraint χ(r[e]).

In this transition, the insertion of the same content in correspondence to different
entries is allowed. If we want to avoid this kind of multiple insertions, the update
r′ must be modified as follows:

r′ := λj.

(
if j = e then x1 else
(if r[j] = x1 then undef else r[j])

)

The formula (5.13) is not in the format (3.7) but can be easily converted
into it as follows:

∃d1, d2 ∃e

 π(x1, x2) ∧ ψ(d1, d2) ∧ r[e] = undef
∧ (x′1 := d1 ∧ x′2 := d2 ∧ s′ := s ∧
∧ r′ := λj.(if j = e then x1 else r[j]))

 (5.14)
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We prove that the preimage along (5.14) of a strongly local formula is strongly
local. Consider a strongly local formula

K := ψ′(x) ∧ ∃e
Diff(e) ∧

∧
er∈e

φer(r[er]) ∧Θ


where Θ is a formula involving the artifact relations s (which are not updated)
such that no er occurs in it.

We compute the preimage Pre(5.14, K)

∃d1, d2 ∃e, e∃x′1, x′2 ∃r′
 π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(x′1, x′2) ∧ r[e] = undef
∧ x′1 := d1 ∧ x′2 := d2 ∧ Diff(e) ∧ ∧

er∈e φer(r′[er]) ∧
∧ r′ := λj.(if j = e1 then x1 else r[j]) ∧Θ


which can be rewritten as a disjunction of the following formulae:

1. ∃d1, d2 ∃e, e
(
Diff(e, e) ∧ π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(d1, d2)
∧ r[e] = undef ∧ ∧

er∈e φer(r[er]) ∧ Θ

)
covering the case where e is different from all ej ∈ e

2. ∃d1, d2 ∃e
(
Diff(e) ∧ π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(d1, d2) ∧
∧ r[e] = undef ∧ ∧

er∈e,er 6=ej
φer(r[er]) ∧ φej

(x1) ∧ Θ

)
covering the case where e = ej, for some ej ∈ e.

We can move the existential quantifiers ∃d1, d2 in front of ψ ∧ ψ′. We eliminate
the quantifiers (applying the quantifier elimination procedure for T ?) from the
subformula ∃d1d2 (ψ(d1, d2) ∧ ψ′(d1, d2)) obtaining a ground formula θ.

The final result is a disjunction of formulae fo the kind
1. ∃e, e

(
Diff(e, e) ∧ π(x1, x2) ∧ r[e] = undef ∧ θ ∧ ∧

er∈e φer(r[er]) ∧ Θ
)

2. ∃e
(
Diff(e) ∧ π(x1, x2) ∧ φej

(x1) ∧ r[e] = undef ∧
∧ θ ∧ ∧er∈e,er 6=ej

φer(r[er]) ∧ Θ

)
which is a strongly local formula.

Analogous arguments show that transitions that insert a tuple of values t :=
(t1, ..., tm) (where the values tj are taken from the content of the artifact variables
x1 := (xi1 , ..., xim) or are constants) into an m-ary artifact relation R are also
strongly local; in addition, it is easy to see that “propagation” (in the sense of
the following subsection) of variables from x is allowed in order to preserve strong
locality of all those transitions. The transition introduced in Example 5.2.9:

∃i:appIndex

pState = enabled ∧ aState = received
∧ applicant[i] = undef
∧ pState′ = enabled ∧ aState′ = undef ∧ cId ′ = undef
∧ appJobCat ′ = λj. (if j = i then jId else appJobCat[j])
∧ applicant ′ = λj. (if j = i then uId else applicant[j])
∧ appResp′ = λj. (if j = i then eId else appResp[j])
∧ appScore′ = λj. (if j = i then -1 else appScore[j])
∧ appResult ′ = λj. (if j = i then undef else appResult[j])
∧ jId ′ = undef ∧ uId ′ = undef ∧ eId ′ = undef


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presents the described format.
We close this section with an important remark. When we forbid the insertion

at different indexes of multiple identical tuples in an artifact relation, transitions
break the strong locality requirement. A way to restore locality is to simply admit
such repeated insertions. Notably, if one focuses on the fragment of strongly
local RAS that coincides with the model in [DLV16; LDV17], it can be shown,
exactly reconstructing the same line of reasoning from [DLV16], that the safety
verification problems (in the restricted common fragment) for artifact systems
working over sets (i.e., insertions are performed over working memory without
possible repetitions) and those working over multisets, are indeed equivalent, in
the sense that, in spite of the semantic differences on how the data component
is interpreted (in particular regarding set vs multiset semantics), the verdict of
safety verification (SAFE or UNSAFE) is unchanged.

5.3.3 Propagation Updates
We want to propagate a tuple t := (t1, ..., tm) of values contained in the artifact
variables x1 := (xi1 , ..., xim) (let x := x1, x2) to the corresponding updated artifact
variables x′1. This operation has to be applied only if the current artifact variables
x satisfy the pre-condition π(x1, x2) and the updated artifact variables x′ := x′1, x

′
2

satisfy the post-condition ψ(x′1, x′2). In this transition no update of artifact
component is involved.

Such an update can be formalized in a symbolic way as follows:

∃d (π(x1, x2) ∧ ψ(x′1, x′2) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s)) (5.15)

where s stands for all the artifact components. The d are nondeterministically
produced values for the updated x′2. In the terminology of [LDV17], the artifact
variables x1 are propagated.

The formula (5.15) is not in the format (3.7) but can be easily converted
into it as follows:

∃d (π(x1, x2) ∧ ψ(x1, d) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s)) (5.16)

We prove that the preimage along (5.16) of a strongly local formula is strongly
local. Consider a strongly local formula

K := ψ′(x) ∧ ∃e (Diff(e) ∧Θ)

where Θ is a formula involving all the artifact relations s (which are not modified
in a propagation update), such that K fits the format of (5.2).

We compute the preimage Pre(5.15, K)

∃d∃x′1, x′2

(
π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, x

′
2) ∧

∧ x′1 := x1 ∧ x′2 := d ∧ Diff(e) ∧ Θ

)
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which can be rewritten as follows:

∃d∃e
(
Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧

∧ ψ′(x1, d) ∧ Θ

)

We can move the existential quantifier ∃d in front of ψ ∧ ψ′. We eliminate
the quantifiers (applying the quantifier elimination procedure for T ?) from the
subformula ∃d(ψ(x1, d) ∧ ψ′(x1d)) obtaining a formula of the kind θ(x1).

The final result is

∃e
(
Diff(e) ∧ π(x1, x2) ∧ θ(x1) ∧ Θ

)
which is a strongly local formula.

Consider a transition that inserts constants or a non-deterministically generated
new value d′ (or a tuple of new values d′) into an artifact component ri (or more
than one) of an m-ary artifact relation r, propagating all the other components
and the artifact variables x1 (with x := x1, x2). Formally, this transition can
be written in the following way:

∃d, d′ ∃e
(

π(x1, x2) ∧ ψ(x′1, x′2) ∧ χ1(d′) ∧ χ2(r[e]) ∧
∧ (x′1 := x1 ∧ x′2 := d ∧ r′i = λj.(if j = e then d′ else r[j]) ∧ s′ := s)

)
(5.17)

where s stands for all the artifact components different from ri, and χ1 and χ2 are
quantifier-free formulae. The d are nondeterministically produced values for the
updated x′2. In the terminology of [LDV17], the artifact variables x1 are propagated.

The formula (5.17) is not in the format (3.7) but can be easily converted
into it as follows:

∃d, d′ ∃e
(

π(x1, x2) ∧ ψ(x1, d) ∧ χ1(d′) ∧ χ2(r[e]) ∧
∧ (x′1 := x1 ∧ x′2 := d ∧ r′i = λj.(if j = e then d′ else r[j]) ∧ s′ := s)

)
(5.18)

Since d′ does not occur in literals involving artifact variables, arguments
analogous to the previous ones show that this transition is strongly local.

The following transition (described in Example 5.2.9):

∃i:joIndex, s:Score
pState = enabled
∧ applicant[i] 6= undef ∧ appScore[i] = -1
aState = undef ∧ aState′ = undef ∧ s ≥ 0
∧ pState′ = enabled ∧ appScore′[i] = s


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that assesses a Score to an applicant presents the structure of (5.18), so it is a
strongly local transition. The same conclusion holds for the transition:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId
pState = enabled ∧ aState = undef
∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef
∧ who(c) = e ∧ what(c) = j
∧ pState′ = enabled ∧ aState′ = received
∧ uId ′ = u ∧ jId ′ = j ∧ eId ′ = e ∧ cId ′ = c


presented in Example 5.2.9.

5.3.4 Bulk Updates
We want to unboundedly (bulk) update one (or more than one) artifact component(s)
ri of one (or more than one) artifact relation(s) r: if some conditions over the artifacts
are satisfied for some entries, a global update that involves all those entries (inserting
some constant c1) is fired. In our symbolic formalism, we write:

∃d
(

π(x1, x2) ∧ ψ(x′1, x′2) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s ∧
∧ r′1 := r1 ∧ ... ∧ r′i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′n := rn)

)
(5.19)

where x := x1, x2 are artifact variables and x1 are propagated, r are the artifact
components of an artifact relation R, s are the remaining artifact components, κ1
is a quantifier-free formula6, c1 is a constant. The artifact component ri is updated
in a global, unbounded way: we call this kind of update "bulk update".

The formula (5.19) is not in the format (3.7) but can be easily converted
into it as follows:

∃d
(

π(x1, x2) ∧ ψ(x1, d) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s ∧
∧ r′1 := r1 ∧ ... ∧ r′i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′n := rn)

)
(5.20)

We prove that the preimage along (5.20) of a strongly local formula is strongly
local. Consider a strongly local formula

K := ψ′(x) ∧ ∃e
Diff(e) ∧

∧
er∈e

φer(r[er]) ∧Θ


where Θ is a formula involving the artifact relations s (which are not updated)
such that no er occurs in it.

We compute the preimage Pre(5.20, K)
6From the computations below, it is clear that strong locality holds also in case κ1 depends

also on the variables x, on the condition that κ1(x, r[j]) has the form h0(x) ∧ h1(r[j]), with h0
and h1 quantifier-free formulae
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∃d∃e

 Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, d)
∧(x′1 := x1 ∧ x′2 := d ∧ s′ := s ∧

∧
er∈e φer (r′[er]) ∧ Θ

∧ r′1 := r1 ∧ ... ∧ r′i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′n := rn)


(5.21)

which can be rewritten as a disjunction of the following formulae indexed by a
function f that associates to every er a boolean value in 0, 1:

∃d, ∃e
(

Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, d) ∧∧
er∈e(εf (er)κ1(r[er]) ∧ φ(r1[er], ...δf (er), ..., rn[er])) ∧ Θ

)
(5.22)

where εf(er) := ¬ if f(er) = 0, otherwise εf(er) := ∅, and δf(er) := c1 if f(er) =
0, otherwise δf(er) := ri[er].

We can conclude as above (cf. propagation updates), by eliminating the
existentially quantified variable d, that this formula is strongly local.

The previous arguments remain the same if r′i :=
λj.(if κ1(r[j]) then c1 else ri[j])) in Formula (5.19) is replaced by
r′i := λj.(if κ1(r[j]) then c1 else c2), with c2 a constant. Even in this
case, the modified bulk transition is strongly local.

Analogous arguments show that transitions involving more than one artifact
relations which are updated like ri are also strongly local.

The transition introduced in Example 5.2.9

pState = enabled ∧ pState′ = notified

aState = undef ∧ aState′ = undef ∧ appResult ′ = λj.

(
if appScore[j] > 80 then winner
else loser

)

is a bulk update transition in the format described in this subsection, so it is
a strongly local transition.

5.4 A Summary of the Comparison with Related
DAP Formalisms

We conclude the chapter by summarizing how our framework relates to the settings
of [BST13] and of [LDV17].

U-RASs and RASs are in general more expressive than the database-driven
systems studied in [BST13], because the latter only employ individual variables
(i.e., what we call artifact variables) in the working memory. For this reason, these
systems can be compared only with the SAS model. As discussed in Remark 5.1.1,
the database-driven systems from [BST13] admit a slightly more general query
language for guards (i.e., they can use n-ary functions, with the proviso that the
background theory is locally finite), but we can enrich our SASs with the same
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capabilities without breaking the decidability result stated in Theorem 5.1.1 (for this
enrichment, see Chapter 7). Keeping these considerations in mind, we notice also
that Theorem 5.1.1 essentially states the same decidability result of Theorem 5 in
[BST13], when we restrict our attention to a first-order setting. We also remark that
the decidability result obtained for Local RASs comprises the decidable case of SASs.

Concerning RASs, we highlighted several times that RASs with the (standard)
DB schema comprising Axioms (3.1) are able to capture all the expressive features
of the artifact systems (the HAS∗ models) presented in [LDV17]. Specifically, the
restrictions imposed in [LDV17] to guarantee decidability are analogous to the
locality condition stated in Section 5.2.1: Theorem 5.2.1 faithfully reconstructs the
decidability result for HAS∗ models when we restrict their verification language to
express only safety properties, and we know from Section 5.3 that all the operations
supported by HAS∗ models fall into the spectrum of (strong) locality. In general,
HAS∗ models and RASs are incomparable: indeed, the former are verified against
generic temporal properties and not only for safety, while the latter are strictly
more expressive, since, for example, RASs support operations such as “bulk updates”
that cannot be performed in HAS∗ models.

Finally, we remark that our framework is the first in the DAP literature to make
use of well-established and highly performing verification tools like SMT solvers.
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Preliminaries For (Uniform) Interpolation

Contents
6.1 General Preliminaries . . . . . . . . . . . . . . . . . . . . 137

6.1.1 Preliminaries on Uniform Interpolants or Covers . . . . 138
6.2 Preliminaries on the Equality Interpolating Condition

and Beth Definability . . . . . . . . . . . . . . . . . . . . 140

6.1 General Preliminaries
We recall some preliminaries from Chapter 2 that are useful also in this part of the
thesis. Again, We adopt the usual first-order syntactic notions of signature, term,
atom, (ground) formula, and so on; our signatures are always finite or countable,
are multi-sorted and include equality for every sort. This implies that variables
are sorted as well. To avoid considering limit cases, we assume that signatures
always contain at least an individual constant per sort. For simplicity, most basic
definitions in this section will be supplied for single-sorted languages only. However,
the adaptation to multi-sorted languages is straightforward: for example, a multi-
sorted signature Σ must contain not only constant, function and relation symbols,
but also sorts. We compactly represent a tuple 〈x1, . . . , xn〉 of variables as x. The
notation t(x), φ(x) means that the term t, the formula φ has free variables included
in the tuple x. Our tuples are assumed to be formed by distinct variables, thus
we underline that, writing e.g. φ(x, y), we mean that the tuples x, y are made of
distinct variables that are also disjoint from each other.

We assume that a function arity can be deduced from the context. Whenever
we build terms and formulae, we always assume that they are well-typed, in the
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sense that the sorts of variables, constants, and function sources/targets match.
The definition of universal and existential forrmulae are as in Chapter 2.

From the semantic side, we use the standard notion of a Σ-structureM and
of truth of a formula in a Σ-structure under a free variables assignment. The
support of a structureM is the disjoint union of the interpretations of the Σ-sorts
in M and is indicated with |M|.

A Σ-theory T is a set of Σ-sentences; a model of T is a Σ-structureM where all
sentences in T are true. The notation T |= φ, the notion of T -satisfiability, of Σ-
constraint and of constraint satisfiability problem for T are the same as in Chapter 2.

We recall that a theory T has quantifier elimination iff for every formula φ(x) in
the signature of T there is a quantifier-free formula φ′(x) such that T |= φ(x)↔ φ′(x).
We also recall from Chapter 2 that quantifier elimination holds in case we can
eliminate quantifiers from primitive formulae, i.e. from formulae of the kind
∃y φ(x, y), where φ is a constraint. We assume again that when we talk about
quantifier elimination, an effective procedure for eliminating quantifiers is given.

We adopt here, given a Σ-structureM, the same notation Σ|M| for the expanded
signature defined in Chapter 2. Moreover, the notions of Σ-embedding, substructure,
extension, amalgamation and diagram are the same as in Chapter 2. We remind
the reader that the typical use of the Robinson Diagram Lemma (cf. Chapter 2) is
the following: suppose we want to show that some structureM can be embedded
into a structure N in such a way that some set of sentences Θ are true. Then, by
the Lemma, this turns out to be equivalent to the fact that the set of sentences
∆(M) ∪Θ is consistent: thus, the Diagram Lemma can be used to transform an
embeddability problem into a consistency problem.

6.1.1 Preliminaries on Uniform Interpolants or Covers
We report the notion of cover taken from [GM08]. Covers turn out to be equivalent,
in the context of first-order logic, to the well-known notion of uniform interpolant,
originally studied in the context of non-classical logics starting from the pioneering
work by Pitts [Pit92].

We first give the general definition of ordinary interpolants, and then we define
what uniform interpolants are in general. We fix a logic or a theory T and a suitable
fragment L (propositional, first-order quantifier-free, etc.) of its language.

Definition 6.1.1 (Ordinary Interpolant). Given two L-formulae φ(x, y) and
ψ(x, z) (here x, y are the variables occurring in φ and x, z are the variables occurring
in ψ) such that φ(x, y) `T ψ(x, z), an ordinary interpolant for (φ, ψ) is an L-formula
φ′(x) where only the x occur, and that satisfies the following two properties:
(i) φ(x, y) `T φ′(x); (ii) φ′(x) `T ψ(x, z).

We say that T has ordinary interpolation if for every pair of L-formulae φ(x, y)
and ψ(x, z) there exists an ordinary interpolant φ′ for (φ, ψ). In case T is a
first-order Σ-theory and L is the quantifier-free fragment (i.e., φ, φ′ and ψ are
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quantifier-free Σ-formulae), we say that an ordinary interpolant as defined above
is a (ordinary quantifier-free) T -interpolant.

We now give the general definition of uniform interpolants.

Definition 6.1.2 (Uniform Interpolant). Given an L-formula φ(x, y) (here x, y
are the variables occurring in φ), a uniform interpolant of φ (w.r.t. y) is an L-
formula φ′(x) where only the x occur, and that satisfies the following two properties:
(i) φ(x, y) `T φ′(x); (ii) for any further L-formula ψ(x, z) such that φ(x, y) `T
ψ(x, z), we have φ′(x) `T ψ(x, z).

We say that T has uniform interpolation if for every L-formula φ(x, y), there
exists an uniform interpolant φ′ of φ w.r.t. y. In case T is a first-order Σ-theory and
L is the quantifier-free fragment (i.e., φ, φ′ and ψ are quantifier-free Σ-formulae),
we say that a uniform interpolant as defined above is a uniform (quantifier-free)
T -interpolant.

Whenever uniform interpolants exist, one can compute an interpolant for an
entailment like φ(x, y) `T ψ(x, z) in a way that is independent of ψ. Notably, if
T has uniform quantifier-free interpolation, then it has ordinary quantifier-free
interpolation, in the sense that if we have φ(x, y) `T ψ(x, z) (for L-formulae φ, φ′),
then there is an L-formula φ′(x) such that φ(x, y) `T φ′(x) and φ′(x) `T ψ(x, z).
In fact, let us suppose that φ(x, y) `T ψ(x, z). If T has uniform quantifier-free
interpolation, then there exists a uniform interpolant φ′ (independent on ψ): the
same φ′(x) can be used as ordinary interpolant for all entailments φ(x, y) `T ψ(y, z),
varying ψ.

We now turn to define the notion of cover, in the context of a first-order
logic theory T .

Definition 6.1.3 (Cover). Fix a theory T and an existential formula ∃e φ(e, y);
call a residue of ∃e φ(e, y) any quantifier-free formula belonging to the set of
quantifier-free formulae

Res(∃e φ) = {θ(y, z) | T |= ∃e φ(e, y)→ θ(y, z)} = {θ(y, z) | T |= φ(e, y)→ θ(y, z)}.

A quantifier-free formula ψ(y) is said to be a T -cover (or, simply, a cover) of
∃e φ(e, y) iff ψ(y) ∈ Res(∃e φ) and ψ(y) implies (modulo T ) all the other formulae
in Res(∃e φ).

It is immediately seen that covers are unique (modulo T -equivalence). The cover
ψ(y) does not depend anymore on the variables e appearing in the existential formula
∃e φ(e, y), hence these variables have been intuitively ’eliminated’ in some sense.
By definition, it is always true that T ` ∃e φ(e, y) → ψ(y); however, in general
T 6` ψ(y) → ∃e φ(e, y). We remark that in case the theory T admits quantifier
elimination, we get also that T ` ψ(y)→ ∃e φ(e, y) and the cover ψ(y) is exactly
the quantifier-free formula that eliminates the quantified variables e from ∃e φ(e, y).

It is straightforward to see that, in case of a first theory T , the notion of T -
(quantifier-free) uniform interpolant and of T -cover are equivalent. In the following,
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we usually prefer to adopt the nomenclature of cover, because of its connection to
the model checking literature (e.g., [GM08; Cal+19d; Cal+21a]).

We say that a theory T admits covers iff every existential formula ∃e φ(e, y)
(equivalently, every primitive formula ∃e φ(e, y)) has a T -cover. Given the
equivalence between covers and uniform interpolants, T admits covers iff T has
uniform quantifier-free interpolation.

Example 6.1.11

Consider the existential formula ∃e (f(e, y1) = y2 ∧ f(e, y3) = y4): it can be
shown that its uniform EUF -interpolant is y1 = y3 → y2 = y4.

Since it is easily seen that existential quantifiers commute with disjunctions,
we notice that it is sufficient to compute covers for primitive formulae, i.e. for
formulae of the kind ∃e φ(e, z), where φ is a constraint. A similar fact holds when
performing quantifier elimination instead of computing covers.

6.2 Preliminaries on the Equality Interpolating
Condition and Beth Definability

We report here some definitions and results we need concerning combined quantifier-
free interpolation. Most definitions and result come from [BGR14], but are simplified
here because we restrict them to the case of universal convex theories.

A theory T is stably infinite iff every T -satisfiable constraint is satisfiable
in an infinite model of T .

A theory T is convex iff for every constraint δ, if T ` δ → ∨n
i=1 xi = yi then

T ` δ → xi = yi holds for some i ∈ {1, ..., n}. Strictly speaking, convexity applies
to a set of literals φ and to a not empty disjunction of variables ∨ni=1 xi = yi,
guaranteeing that whenever we have T |= φ → ∨n

i=1 xi = yi, then we get also
T |= φ→ xi = yi for some i = 1, . . . , n. If, instead of variables, we have terms, the
same property nevertheless applies: if we have T |= φ→ ∨n

i=1 ti = ui, then for fresh
variables xi, yi we get T |= φ∧∧ni=1(xi = ti ∧ yi = ui)→

∨n
i=1 xi = yi, which implies,

by applying the definition of convexity, the same property for terms.
A convex theory T is ‘almost’ stably infinite in the sense that it can be shown

that every constraint which is T -satisfiable in a T -model whose support has at least
two elements is satisfiable also in an infinite T -model. The one-element model can
be used to build counterexamples, though: e.g., the theory of Boolean algebras is
convex (like any other universal Horn theory) but the constraint x = 0 ∧ x = 1 is
only satisfiable in the degenerate one-element Boolean algebra. Since we take into
account these limit cases, we do not assume that convexity implies stable infiniteness.
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Definition 6.2.1 (Equality Interpolating Property). A convex universal
theory T is equality interpolating iff for every pair y1, y2 of variables and for every
pair of constraints δ1(x, z1, y1), δ2(x, z2, y2) such that

T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = y2 (6.1)

there exists a term t(x) such that

T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = t(x) ∧ y2 = t(x). (6.2)

The theorem below (taken from [BGR14]) states that quantifier-free interpolation
and the equality interpolation condition can be semantically characterized using the
notion of strong amalgamation. We first define this algebraic notion. We recall from
Chapter 2 that a universal theory T has the amalgamation property iff whenever
we are given modelsM1 andM2 of T and a common substructureM0 of them,
there exists a further modelM of T endowed with embeddings µ1 :M1 −→ M
and µ2 :M2 −→M whose restrictions to |M0| coincide. We say that a universal
theory T has the strong amalgamation property if the above embeddings µ1, µ2
and the above model M can be chosen so as to satisfy the following additional
condition: if for some m1,m2 we have µ1(m1) = µ2(m2), then there exists an
element a in |M0| such that m1 = a = m2.

Theorem 6.2.1. [BGR14] The following two conditions are equivalent for a
convex universal theory T : (i) T is equality interpolating and has quantifier-free
interpolation; (ii) T has the strong amalgamation property.

Proof. For the sake of completeness, we report the proof of the implication (i)⇒ (ii)
(this is the only fact used in Chapter 8). Suppose that T is equality interpolating
and has quantifier-free interpolation; we prove that it is strongly amalgamable. If
the latter property fails, by Robinson Diagram Lemma, there exist modelsM1,M2
of T together with a shared submodel A such that the set of sentences

∆Σ(M1) ∪∆Σ(M2) ∪ {m1 6= m2 | m1 ∈ |M1| \ |A|, m2 ∈ |M2| \ |A|}

is not T -consistent. By compactness, the sentence

δ1(a,m1) ∧ δ2(a,m2)→
∨

n1∈m1,n2∈m2

n1 = n2

is T -valid, for some tuples a ⊆ |A|, m1 ⊆ (|M1| \ |A|), m2 ⊆ (|M2| \ |A|) and
for some ground formulae δ1(a,m1), δ2(a,m2) true in M1,M2, respectively. If
the disjunction is empty, we get T |= δ1(a,m1) → ¬δ2(a,m2) and then we get a
contradiction by the quantifier-free interpolation property (the argument is the
same as below). Otherwise, by convexity, there are n1 ∈ m1, n2 ∈ m2 such that

δ1(a,m1) ∧ δ2(a,m2)→ n1 = n2
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is T -valid. By the equality interpolating property, there is a term t(a) such that

δ1(a,m1) ∧ δ2(a,m2)→ n1 = t(a)

is T -valid. By the quantifier-free interpolation property, there is a quantifier-free
formula θ(a) such that

δ1(a,m1) ∧ n1 6= t(a)→ θ(a)

and
θ(a)→ ¬δ2(a,m2)

are both T -valid. Since n1 ∈ |M1| \ |A|, we have that n1 6= t(a) is true inM1. But
then we have a contradiction because θ(a) is true in M1, A and in M2 as well
(truth of quantifier-free formulae moves back and forth via substructures).

We underline that Theorem 6.2.1 extends also to the non-convex case provided
the notion of an equality interpolating theory is suitably adjusted [BGR14].

The equality interpolating property in a theory T can be equivalently char-
acterized using Beth definability as follows.

Consider a primitive formula ∃zφ(x, z, y) (here φ is a conjunction of literals);
we say that ∃z φ(x, z, y) implicitly defines y in T iff the formula

∀y ∀y′ (∃zφ(x, z, y) ∧ ∃zφ(x, z, y′)→ y = y′) (6.3)

is T -valid. We say that ∃zφ(x, z, y) explicitly defines y in T iff there is a term
t(x) such that the formula

∀y (∃zφ(x, z, y)→ y = t(x)) (6.4)

is T -valid.
For future use, we notice that, by trivial logical manipulations, the formulae (6.3)

and (6.4) are logically equivalent to

∀y∀z∀y′∀z′(φ(x, z, y) ∧ φ(x, z′, y′)→ y = y′) . (6.5)

and to

∀y∀z(φ(x, z, y)→ y = t(x)) (6.6)

respectively (we shall use such equivalences without explicit mention).
We say that a theory T has the Beth definability property for primitive formulae

iff whenever a primitive formula ∃z φ(x, z, y) implicitly defines the variable y then
it also explicitly defines it.

Theorem 6.2.2. [BGR14] A convex theory T having quantifier-free interpolation is
equality interpolating iff it has the Beth definability property for primitive formulae.
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Proof. We recall the easy proof of the left-to-right side (this is the only side we
need in the thesis). Suppose that T is equality interpolating and that

T ` φ(x, z, y) ∧ φ(x, z′, y′)→ y = y′ ;

then there is a term t(x) such that

T ` φ(x, z, y) ∧ φ(x, z′, y′)→ y = t(x) ∧ y′ = t(x) .

Replacing z′, y′ by z, y via a substitution, we get precisely (6.6).
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In the first part of this thesis, we introduced two categories of (Array-Based)
Artifact Systems, called SASs and (Universal) RAS respectively, and we devised a
theoretical machinery for verifying these systems based on a declarative version of
the backward reachability procedure. We noticed in Chapter 4 that, in order to
employ backward search in the context of Artifact Systems interacting with a read-
only database, suitable quantifier elimination algorithms are needed. Specifically,
given a DB theory T formalizing the read-only database, at each iteration of the
main loop of the procedure, an algorithm performing quantifier elimination in an
enriched theory of T (i.e., the model completion T ∗) is executed and applied to the
formulae representing preimages of states. Unfortunately, the quantifier elimination
algorithms described in Chapter 4 are purely theoretical and are highly impractical,
since they require enumerating all the quantifier-free formulae built up from a
fixed tuple of variables in the signature of T .
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This second part of the thesis is devoted to studying sophisticated automated
reasoning techniques to solve efficiently the problem of eliminating quantifiers
in model completions.

In order to do so, we first show in Section 7.1 that eliminating quantifiers in
model completions T ∗ is equivalent to the problem of computing T -covers. The
notion of cover has been studied in symbolic model checking in the context of
program synthesis and verification; covers are well-known also in the tradition
of non-classical logics, but under the name of uniform interpolants. Given this
equivalence, we can lift our focus to computing covers: in Section 7.2, we argue
how computing covers is not only essential for verifying Artifact Systems, but
also for slightly more general systems (that we call declarative transition systems)
comprising different frameworks from the literature.

We dedicate the main portion of this chapter to attacking the problem of finding
practical and efficient algorithms for covers on two of the most useful (and minimal)
theories for DB schemas. The first DB theory is expressive enough to represent
relational databases with primary and foreign keys (cf. Section 3.1), whereas the
second one captures the framework from [DLV16; LDV17].

We locate the problem of computing covers in a more general setting: instead of
restricting our attention to (functional) DB signatures, we consider generic signatures
comprising also n-ary functions and n-ary relations, and we prove that some
conditions over DB schemas studied in Section 4.6 (e.g., acyclicity) can be removed.
This is achieved by providing in Section 7.3 a general algorithm for computing
covers based on a constrained version of the well-established Superposition Calculus,
called SuperCover calculus: the Superposition Calculus is currently the state-of-
the-art inference system used in saturation-based theorem proving for first-order
logic with equality, and currently implemented in most efficient theorem provers.
In Section 7.4, we specialize the SuperCover calculus to the fragment needed to
formalize DB schemas extended with free n-ary relations (which is sufficient for our
applications), and we show that in this fragment the calculus is computationally
tractable: we provide a quadratic upper bound in time.

We finally report on the implementation of our algorithm for computing covers
in the state-of-the-art mcmt model checker (http://users.mat.unimi.it/
users/ghilardi/mcmt/). In fact, we built on top of this tool creating a
specific module for supporting the verification of Artifact Systems like U-RASs:
we call this module database-driven mode of mcmt, which will be presented in
detail in Chapter 9.

7.1 Uniform Interpolation, Covers and Model
Completions

This main topic of this chapter is computing covers: this notion has been already
defined formally in the preliminaries of this part (cf. Chapter 6). We will see
how covers play a fundamental role for DAP verification, and in particular for

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
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the safety verification of (Universal) RASs and SASs. In order to do so, we first
link covers to model completions.

In this section, we show that the problem of eliminating quantifiers in model
completions is strictly related to the problem of computing uniform interpolants
or, equivalently, covers. More formally, we prove that when covers exist in a
a first-order universal theory T , the model completion T ∗ of T exists, and vice
versa. Moreover, we show that computing covers in T is equivalent to eliminating
quantifiers in its model completion T ∗.

We first state and prove the following Lemma (to be widely used throughout
Part II), which supplies a semantic counterpart to the notion of cover:

Lemma 7.1.1 (Cover-by-Extensions). A formula ψ(y) is a T -cover of ∃e φ(e, y)
iff it satisfies the following two conditions: (i) T |= ∀y (∃e φ(e, y)→ ψ(y)); (ii) for
every modelM of T , for every tuple of elements a from the support ofM such
thatM |= ψ(a) it is possible to find another model N of T such thatM embeds
into N and N |= ∃e φ(e, a).

Proof. Suppose that ψ(y) satisfies conditions (i) and (ii) above. Condition (i) says
that ψ(y) ∈ Res(∃e φ), so ψ is a residue. In order to show that ψ is also a cover,
we have to prove that T |= ∀y, z(ψ(y)→ θ(y, z)), for every θ(y, z) that is a residue
for ∃e φ(e, y). Given a modelM of T , take a pair of tuples a, b of elements from
|M| and suppose thatM |= ψ(a). By condition (ii), there is a model N of T such
thatM embeds into N and N |= ∃e φ(e, a). Using the definition of Res(∃e φ), we
have N |= θ(a, b), since θ(y, z) ∈ Res(∃xφ). SinceM is a substructure of N and θ
is quantifier-free,M |= θ(a, b) as well, as required.

Suppose that ψ(y) is a cover. The definition of residue implies condition (i). To
show condition (ii) we have to prove that, given a modelM of T , for every tuple a
of elements from |M|, ifM |= ψ(a), then there exists a model N of T such that
M embeds into N and N |= ∃xφ(x, a). Using Robinson Diagram Lemma, we can
reformulate the latter embeddability statement into a consistency statement: so
what we need to prove is that ∆(M) ∪ {∃xφ(x, a)} is a T -consistent Σ|M|-set of
sentences (Σ is the signature of T ). By reduction to absurdity, suppose that this is
not the case: by compactness, there is a finite number of literals `1(a, b), ..., `m(a, b)
(for some tuple b of elements from |M|) such thatM |= `i(a, b) (for all i = 1, . . . ,m)
and

(∗) T |= ∃e φ(e, a)→ ¬(`1(a, b) ∧ · · · ∧ `m(a, b)) .

Now, the constants a, b do not occur in the axioms of T and do not belong to Σ,
hence we can replace them by variables y, z in the T -proof witnessing (∗): indeed,
since they do not occur in the axioms of T , they are generic from the point of view
of T . As a consequence, we then get

T |= ∃e φ(e, y)→ (¬`1(y, z) ∨ · · · ∨ ¬`m(y, z)).

By definition of residue, clearly (¬`1(y, z) ∨ · · · ∨ ¬`m(y, z)) ∈ Res(∃xφ); then,
since ψ(y) is a cover, T |= ψ(y)→ (¬`1(y, z) ∨ · · · ∨ ¬`m(y, z)). Replacing back the
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variables y, z by the constants a, b and recalling thatM |= ψ(a), this implies that
M |= ¬`j(a, b) for some j = 1, . . . ,m, which is a contradiction. Thus, ψ(y) satisfies
conditions (ii) too.

We recall from Chapter 2 that, in view of Proposition 2.4.1, a universal theory
T has a model completion iff there is a stronger theory T ∗ ⊇ T (still within the
same signature Σ of T ) such that (i) every Σ-constraint that is satisfiable in a model
of T is satisfiable in a model of T ∗; (ii) T ∗ eliminates quantifiers.

A close relationship between model completion and uniform interpolation
emerged in the area of propositional logic (see the book [GZ02]) and can be
formulated roughly as follows. It is well-known that most propositional calculi, via
Lindenbaum constructions, can be algebraized: the algebraic analogue of classical
logic are Boolean algebras, the algebraic analogue of intuitionistic logic are Heyting
algebras, the algebraic analogue of modal calculi are suitable varieties of modal
algebras, etc. Under suitable hypotheses, it turns out that a propositional logic has
uniform interpolation (for the global consequence relation) iff the equational theory
axiomatizing the corresponding variety of algebras has a model completion [GZ02].

In the context of first-order theories, we can prove an even more direct connection,
which will be crucial for our applications to data-aware processes verification:

Theorem 7.1.2. Suppose that T is a universal theory. Then T has a model
completion T ∗ iff T has uniform quantifier-free interpolation. If this happens, T ∗ is
axiomatized by the infinitely many sentences

∀y (ψ(y)→ ∃e φ(e, y)) (7.1)

where ∃e φ(e, y) is a primitive formula and ψ is a cover of it.

Proof. Suppose first that there is a model completion T ∗ of T and let ∃e φ(e, y) be a
primitive formula. Since T ∗ eliminates quantifiers, we have T ∗ |= ∃e φ(e, y)↔ ψ(y)
for some quantifier-free formula ψ(y). Since T and T ∗ prove the same quantifier-free
formulae, from the left-to-right side T ∗ |= φ(e, y) → ψ(y) we have that ψ(y) ∈
Res(∃e φ). If θ(y, z) ∈ Res(∃e φ), then we have T |= φ(e, y) → θ(y, z); the
same entailment holds in T ∗ too, where we have T ∗ |= ψ(y) → θ(y, z). Since
ψ(y) → θ(y, z) is quantifier-free, we have also T |= ψ(y) → θ(y, z), showing that
ψ is a cover of ∃e φ(e, y). Thus T has uniform interpolation, because we found a
cover for every primitive formula.

Suppose vice versa that T has uniform interpolation. Let T ∗ be the theory
axiomatized by all the formulae (7.1) above. From (i) of Lemma 7.1.1 and (7.1)
above, we clearly get that T ? admits quantifier elimination: in fact, in order to prove
that a theory enjoys quantifier elimination, it is sufficient to eliminate quantifiers
from primitive formulae (then the quantifier elimination for all formulae can be easily
shown by an induction over their complexity). This is exactly what is guaranteed
by (i) of Lemma 7.1.1 and (7.1).
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Let M be a model of T . By using a chain argument [Cal+20b] (see [CK90],
Lemma 3.5.7 for an almost identical construction), we show that there exists a model
M′ of T ? such thatM embeds intoM′. Consider the set of all pairs (a,∃e φ(e, a))
where a is a tuple from |M|, ∃e φ(e, y) is a primitive formula andM |= ψ(a) (here
ψ is a cover of φ). By Zermelo’s Theorem, the set of such pairs (a,∃e φ(e, a)) can
be well-ordered: let {(ai,∃ei φi(ei, ai))}i∈I be such a well-ordered set of pairs, where
I is some ordinal.1 By transfinite induction on this well-order, we defineM0 :=M
and, for each i ∈ I,Mi as an extension of ⋃j<iMj such thatMi |= ∃ei φi(ei, ai),
which exists for (ii) of Lemma 7.1.1 since ⋃j<iMj |= ψi(ai) (remember that validity
of ground formulae is preserved passing through substructures and superstructures,
andM0 |= ψi(ai)).

Now we take the chain unionM1 := ⋃
i∈IMi: since T is universal,M1 is again a

model of T . Thanks to this construction, we added, for every pair (ai,∃ei φi(ei, ai))
(with ai ∈ M and M |= ψi(ai)), a corresponding tuple bi such that M1 |=
φi(bi, ai); however, this only guarantees that such a tuple bi exists for every pair
(ai,∃ei φi(ei, ai)) such that the tuple ai is from |M|, whereas nothing is said for
the pairs where the tuple a is in |M1| \ |M|. Then, we iteratively repeat the
chain construction above for these new a. Indeed, it is possible to construct, by an
analogous chain argument, a modelM2 as done above, starting fromM1 instead
ofM. Clearly, we getM0 :=M⊆M1 ⊆M2 by construction.

At this point, we iterate the same argument countably many times, so as to
define a new chain of models of T :

M0 :=M⊆M1 ⊆ ... ⊆Mn ⊆ ...

DefiningM′ := ⋃
nMn, we trivially get thatM′ is a model of T such thatM⊆M′

and satisfies all the sentences of type (7.1): the last fact is immediate, recalling that
truth of ground formulae (in expanded languages with names from support sets)
is preserved by substructures and extensions. After ω steps we are done, because
every tuple a ∈ |M′| occurs after finitely many steps, and its corresponding b in
the construction are added at the immediately subsequent step.

To sum up, Theorem 7.1.2 proves that a universal theory T admits a model
completion iff T admits covers. Additionally, Theorem 7.1.2 states that, thanks to
Formulae (7.1), the T -uniform interpolant (or T -cover) ψ of the formula ∃e φ(e, y)
is exactly the T ∗-equivalent quantifier-free formula that eliminates the quantified
variables e from ∃e φ(e, y): this means that computing covers in T is equivalent
to eliminating quantifiers in its model completion T ∗.

1I is possibly different from ω (there can be uncountably many tuples ai).
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7.2 Model-Checking Applications
In this section we supply old and new motivations for investigating covers and
model completions in view of model-checking applications. The notion of cover was
introduced in [GM08] in the context of symbolic model checking for computing
images of reachable states through transitions. The forward reachability procedure
based on cover computation can be successfully employed for program analysis and
verification, and it is the dual counterpart of the backward reachability procedure
for the transition systems defined in this section.

We provide a generic definition of declarative (quantifier-free) transition system
that comprises and generalizes both the framework from [GM08] and a “non-
functional” version of SASs (cf. Section 3.2.1). In this version updates are not
functional as in standard SASs because they do not use case-defined functions;
instead, transitions are generic quantifier-free formulae in individual variables x, x′.
This notion of declarative transition system is useful to give a slightly more general
setting (i.e., without an explicit reference to DB schemas and/or specific formats
of transition formulae) where computing covers is crucial. In fact, we recall from
Chapter 4 that BReachSAS (and BReachRAS as well) requires the elimination of
existential quantifiers in model completions of DB theories: in view of Theorem 7.1.2,
we know that eliminating quantifiers in model completions T ∗ is equivalent to
computing covers in T . This motivates for SASs the study of (efficient) cover
algorithms. We will see in this section that cover computation is important for
declarative transition systems in general.

For the sake of simplicity, it is sufficient to investigate symbolic model-checking
via model completions (or, equivalently, via covers) in the basic case where system
variables are represented as individual variables; for more advanced applications
where system variables are both individual and higher order variables, e.g., in RASs,
all the results in this chapter still hold. Indeed, we already commented in Section 4.3
how the quantifier elimination procedure in BReachSAS can be easily extended to
the one in BReachRAS. In the rest of this chapter, we will then restrict our attention
on declarative transition systems using only individual variables.

For completeness, we remark also that similar ideas, i.e., ‘to use quantifier
elimination in the model completion even if T does not allow quantifier elimination’,
were used in [SS16] for interpolation and symbol elimination.

Definition 7.2.1 (Declarative Transition System). A declarative (quantifier-
free) transition system is a tuple

S = 〈Σ, T, x, ι(x), τ(x, x′)〉

where: (i) Σ is a signature and T is a Σ-theory; (ii) x = x1, . . . , xn are individual
variables; (iii) ι(x) is a quantifier-free formula; (iv) τ(x, x′) is a quantifier-free
formula (here the x′ are renamed copies of the x).



7. Uniform Interpolation for Database Theories 151

Notice that the theory T mentioned in the previous definition, contrary to DB
theories, can contain n-ary function symbols. An unsafe formula for a transition
system S is a further quantifier-free formula υ(x) describing undesired states of S.
We say that S is safe with respect to υ if the system has no finite run leading from ι

to υ, i.e. (formally) if there is no modelM of T and no k ≥ 0 such that the formula

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) (7.2)

is satisfiable inM (here xi’s are renamed copies of x). The safety problem for S
is the following: given υ, decide whether S is safe with respect to υ.

Suppose now that the theory T mentioned in Definition 7.2.1 (i) is universal,
has decidable constraint satisfiability problem and admits covers. Notice that, apart
from the finite model property (which is essential for database applications), the
other conditions match Assumption 4.1.1 for DB schemas: indeed, admitting covers
is equivalent to admitting model completions, thanks to Theorem 7.1.2. A variant of
the backward reachability procedure (i.e., Algorithm 3), called BReachDTS, can be
used to assess safety of declarative transition systems as well. Algorithm 3 describes
the backward reachability algorithm for handling the safety problem for S (the dual
algorithm working via forward search is described in [GM08]).

An integral part of the algorithm is to compute preimages. As it happens
for Array-Based Artifact Systems (cf. Chapter 4), for any ϕ1(x, x′) and ϕ2(x)
(where x′ are renamed copies of x),

Pre(ϕ1, ϕ2) is the formula ∃x′(ϕ1(x, x′) ∧ ϕ2(x′)). The preimage of the set of
states described by a state formula φ(x) is the set of states described by Pre(τ, φ).
The subprocedure Coversx(T, φ′) in Line 6 computes a T -cover of the existential
formula φ, maintaining the variables x and resulting in a sort of ‘elimination’ of
the existential variables x′ in φ′ := Pre(τ, φ). Formally, the procedure Coversx(T, α)
takes as input an existential formula α := ∃x′ϕ(x, x′) and computes the T -cover
ψ(x), which does not depend on the existentially quantified variables x′ anymore:
this easily follows from the definition of cover. Without the application of this
subprocedure, the existential prefix generated by the computation of preimages
would grow in an unlimited way and some decidability results (see, e.g., the locally
finite case mentioned below) would be compromized.

Algorithm 3 computes iterated preimages of υ (storing their disjunction into the
variable B) and applies to them quantifier elimination, until a fixpoint is reached
or until a set intersecting the initial states (i.e., satisfying ι) is found. Inclusion
(Line 2) and disjointness (Line 3) tests produce proof obligations that can be
discharged because T has decidable constraint satisfiability problem. Notice that,
in case of SASs, Theorem 7.1.2 implies Coversx(T, φ) = QESAS(T ∗, φ), and this
algorithm exactly coincides with BReachSAS.

We adopt for declarative transition systems the same nomenclature (i.e.,
effectiveness, soundness etc.) that we used for Array-Based Artifact Systems.

Theorem 7.2.1 is a slight variant of the Theorem 4.2.1 from SASs:
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Algorithm 3: Backward search for declarative transition systems
Function BReach(υ)

1 φ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is T -satisfiable do
3 if ι ∧ φ is T -satisfiable. then

return unsafe
4 B ←− φ ∨B;
5 φ←− Pre(τ, φ);
6 φ←− Coversx(T, φ);

return safe;

Theorem 7.2.1. Suppose that the universal Σ-theory T has decidable constraint
satisfiability problem and admits covers. For every declarative transition system
S = 〈Σ, T, x, ι, τ〉, the backward search algorithm (Algorithm 3) is effective and
correct for solving safety problems for S.

Its proof can be adapted from the proof of Theorems 4.2.1. Theorem 7.2.1
is a crucial fact: notice that it implies decidability of the safety problems in
some interesting cases. For instance, we can get this result by adapting the
proof of Theorem 5.1.1, when in T there are only finitely many quantifier-free
formulae in which x occur, as in case T has a purely relational signature or, more
generally, T is locally finite2.

Using the same arguments as in Remark 5.1.1, it follows that Theorem 7.2.1
can be used to cover the decidability result stated in Theorem 5 of [BST13] (once
restricted to transition systems over a first-order definable class of Σ-structures).

7.2.1 Covers for Database Schemas
We already noticed that declarative transition systems slightly generalize SASs, and
that Algorithm 3 coincides with BReachSAS when applied to SASs: this implies
that studying efficient ways for computing covers inherits all the interest that
we devoted to quantifier elimination in model completions when verifying Array-
Based Artifact Systems (cf. Part I). As deeply discussed in Part I, the application
of these techniques relates to the verification of integrated models of (business)
processes and data [CDGM13], referred to as artifact systems [Via09], where the
behavior of the process is influenced by data stored in a relational database with
constraints. We extensively studied several models of artifact systems, but, as
argued, in this chapter it is sufficient to restrict our attention on SASs only. We
remind the reader that the data contained therein are read-only: they can be
queried by the process and stored in a working memory, which in the context of
SASs is constituted by a set of system variables. In this context, safety amounts to

2We recall that T is locally finite iff for every finite tuple of variables x there are only finitely
many T -equivalence classes of atoms A(x).
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checking whether the system never reaches an undesired property, irrespectively
of what is contained in the read-only database.

As described in Section 3.1, in these systems the database is formalized through
a DB schema 〈Σ, T 〉 and is constrained by the axioms of the DB theory T . Notice
that, given a DB signature Σ, using T := EUF over Σ as DB theory is sufficient to
handle the sophisticated setting of artifact systems from Part I, because relational
databases with key dependencies do not require additional axioms. The role of a non-
empty DB theory is to encode background axioms to express additional constraints.
We recall from Section 3.1 a typical background axiom (i.e., Axiom (3.1)), needed
to tackle the possible presence of undefined identifiers/values in the different sorts.
This, in turn, allows us to capture artifact systems whose working memory is initially
undefined, so as to fulfil all the requirements of [DLV16; LDV17]. To accommodate
this, in Section 3.1 we added to every sort of Σ a constant undef, used to specify
an undefined value. Then, for each function symbol f of Σ, we can impose the
following additional constraint involving undef (adding it to EUF):

∀x (x = undef ↔ f(x) = undef)

This axiom (namely, Axiom (3.1)) states that the application of f to the undefined
value produces an undefined value, and it is the only situation for which f is
undefined. A slightly different approach may handle many undefined values for
each sort: this adaptation is trivial and is left to the reader. We just point out
that in most cases the kind of axioms that we need for our DB theories T are just
one-variable universal axioms (like Axioms 3.1), so that they fit the hypotheses of
Proposition 4.6.3 from Chapter 4: for the sake of completeness, we summarize here
the main results achieved for such a class of DB theories in Section 4.6.

Proposition 7.2.2. A DB theory T has decidable constraint satisfiability problem
and admits a model completion in case it is axiomatized by finitely many universal
one-variable formulae and Σ is acyclic.

We recall the algorithm for quantifier elimination in T ∗ (or, equivalently, for
computing T -covers) suggested by the proof of the previous result: given a primitive
formula ∃e φ(e, y), the output ψ(y) of the algorithm is the conjunction of the set of
all quantifier-free χ(y) formulae such that φ(e, y)→ χ(y) is a logical consequences
of T (they are finitely many - up to T -equivalence - because Σ is acyclic).

This algorithm is highly impractical, although it works in theory and in the proof.
Indeed, even in case of T := EUF , it requires to check whether φ(e, y)→ χ(y) is
logically true for every quantifier-free formula χ(y) (with the proviso of not choosing
a formula χ from a T -equivalence class more than once). The number of all such
formulae, although finite, quickly explodes exponentially in the size of y. This is one
of the reasons why in the next sections we study more efficient algorithms, based on
a constrained version of the Superposition Calculus, for computing EUF -covers and
for the interesting DB theory containing Axioms (3.1). We show that in case the DB
theory is EUF over a DB signature Σ, the algorithm has a quadratic bound. These
algorithms are quite general, and comprise the case the signature is not acyclic.
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7.3 Covers via Constrained Superposition
Of course, a model completion may not exist at all. Proposition 4.6.3 shows that it
exists in case T is a DB theory axiomatized by universal one-variable formulae and
Σ is acyclic. The second hypothesis is unnecessarily restrictive and the algorithm
for quantifier elimination suggested by the proof of Proposition 4.6.3 is highly
impractical: for this reason we are trying a different approach.

In this section, we study the problem of computing covers efficiently, and for
that we devise a sophisticated procedure based on a constrained version of the
Superposition Calculus, which we call SuperCover. We locate the contribution of
this section in the general setting provided by declarative transition systems, since
SuperCover can be used, e.g., as the subroutine Coversx in Algorithm 3. Indeed,
from now on, we drop the acyclicity hypothesis and examine the case where we have
EUF as background theory and its signature Σ may contain function and relation
symbols of any arity: hence, we analyze a case that is strictly more general than
the one of DB schemas needed for DAP verification. Covers in this general context
were claimed to exist already in [GM08], using an algorithm that, very roughly
speaking, determines all the conditional equations that can be derived concerning
the nodes of the congruence closure graph. However, this algorithm contains some
bugs that need to be fixed: see below for a counterexample.

We follow a different plan and we want to produce covers (and show that
they exist) using saturation-based theorem proving. The natural idea to proceed
in this sense is to take the matrix φ(e, y) of the primitive formula ∃e φ(e, y) we
want to compute the cover of: this is a conjunction of literals, so we consider each
variable as a free constant, we saturate the corresponding set of ground literals
and finally we output the literals involving only the y. For saturation, one can use
any version of the superposition calculus [NR01]. However, this procedure for our
problem is not sufficient. As a trivial counterexample consider the primitive formula
∃e (R(e, y1) ∧ ¬R(e, y2)): the set of literals {R(e, y1),¬R(e, y2)} is saturated (recall
that we view e, y1, y2 as constants), however the formula has a non-trivial cover
y1 6= y2 which is not produced by saturation. If we move to signatures with function
symbols, the situation is even worse: the set of literals {f(e, y1) = y′1, f(e, y2) = y′2}
is saturated but the formula ∃e (f(e, y1) = y′1 ∧ f(e, y2) = y′2) has the conditional
equality y1 = y2 → y′1 = y′2 as cover. Disjunctions of disequations might also arise:
the cover of ∃e h(e, y1, y2) 6= h(e, y′1, y′2) (as well as the cover of ∃e f(f(e, y1), y2) 6=
f(f(e, y′1), y′2), see Example 7.3.12 below) is y1 6= y′1 ∨ y2 6= y′2. This example
points out a problem that needs to be fixed in the algorithm presented in [GM08]:
that algorithm in fact outputs only equalities, conditional equalities and single
disequalities, so it cannot correctly handle this example.

Notice that our problem is different from the problem of producing ordinary
quantifier-free interpolants via saturation based theorem proving [KV09]: for ordi-
nary Craig interpolants, we have as input two quantifier-free formulae φ(e, y), φ′(y, z)
such that φ(e, y)→ φ′(y, z) is valid; here we have a single formula φ(e, y) as input
and we are asked to find an interpolant which is good for all possible φ′(y, z) such
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that φ(e, y) → φ′(y, z) is valid. Ordinary interpolants can be extracted from a
refutation of φ(e, y) ∧ ¬φ′(y, z), whereas here we are not given any refutation at
all (and we are not even supposed to find one).

What we are going to show is that, nevertheless, saturation via superposition
can be used to produce covers, if suitably adjusted. In this section we consider
signatures with n-ary function symbols (for all n ≥ 1). For simplicity, we omit
n-ary relation symbols (they can be easily handled by rewriting R(t1, . . . , tn) as
R(t1, . . . , tn) = true, as customary in the paramodulation literature [NR01]).

We are going to compute the cover of a primitive formula ∃e φ(e, y) to be fixed
for the remainder of this section. We call variables e existential and variables y
parameters. By applying abstraction steps, we can assume that φ is primitive flat,
i.e. that it is a conjunction of e-flat literals, defined below. [By an abstraction step
we mean replacing ∃e φ with ∃e ∃e′ (e′ = u ∧ φ′), where e′ is a fresh variable and φ′
is obtained from φ by replacing some occurrences of a term u(e, y) by e′].

A term or a formula are said to be e-free iff the existential variables do not
occur in it. An e-flat term is an e-free term t(y) or a variable from e or again it
is of the kind f(u1, . . . , un), where f is a function symbol and u1, . . . , un are e-free
terms or variables from e. An e-flat literal is a literal of the form

t = a, a 6= b

where t is an e-flat term and a, b are either e-free terms or variables from e.
We assume the reader is familiar with standard conventions used in rewriting

and paramodulation literature: in particular s|p denotes the subterm of s in position
p and s[u]p denotes the term obtained from s by replacing s|p with u. We use ≡ to
indicate coincidence of syntactic expressions (as strings) to avoid confusion with
equality symbol; when we write equalities like s = t below, we may mean both
s = t or t = s (an equality is seen as a multiset of two terms). For information
on reduction orderings, see for instance [BN98].

We first replace variables e = e1, . . . , en and y = y1, . . . , ym by free constants -
we keep the names e1, . . . , en, y1, . . . , ym for these constants. Let > be a reduction
ordering that is total for ground terms such that e-flat literals t = a are always
oriented from left to right in the following two cases: (i) t is not e-free and a is
e-free; (ii) t is not e-free, it is not equal to any of the e and a is a variable from e.
To obtain such properties, one may for instance choose a suitable Knuth-Bendix
ordering taking weights in some transfinite ordinal (see, e.g., [LW07]).

Given two e-flat terms t, u, we indicate with E(t, u) the following procedure,
which intuitively is a unification algorithm for the terms t and u where the e
variables are treated as constants; as shown by Lemma 7.3.1 below, E(t, u) collects
‘the equalities that are needed in order to force t = u’, whenever the e are assumed
to be free (i.e. not to satisfy any specific equational constraint):
• E(t, u) fails if t is e-free and u is not e-free (or vice versa);
• E(t, u) fails if t ≡ ei and (either u ≡ f(t1, . . . , tk) or u ≡ ej for i 6= j);
• E(t, u) = ∅ if t ≡ u;
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• E(t, u) = {t = u} if t and u are different but both e-free;
• E(t, u) fails if neither of t, u is e-free, t ≡ f(t1, . . . , tk) and u ≡ g(u1, . . . , ul) for
f 6≡ g;
• E(t, u) = E(t1, u1) ∪ · · · ∪ E(tk, uk) if neither of t, u is e-free, t ≡ f(t1, . . . , tk),
u ≡ f(u1, . . . , uk) and none of the E(ti, ui) fails.

Notice that, whenever E(t, u) succeeds, the formula ∧E(t, u)→ t = u is universally
valid. The definition of E(t, u) is motivated by the next lemma.

Lemma 7.3.1. Let R be a convergent (i.e. terminating and confluent) ground
rewriting system, whose rules consist of e-free terms. Suppose that t and u are
e-flat terms with the same R-normal form. Then E(t, u) does not fail and all pairs
from E(t, u) have the same R-normal form as well.

Proof. This is due to the fact that if t is not e-free, no R-rewriting is possible at
root position because rules from R are e-free.

In the following, we handle constrained ground flat literals of the form L ‖C
where L is a ground flat literal and C is a conjunction of ground equalities among
e-free terms. The logical meaning of L ‖C is the Horn clause ∧C → L.

In the literature, various calculi with constrained clauses were considered,
starting, e.g., from the non-ground constrained versions of the Superposition Calculus
of [Bac+95; NR95]. The calculus we propose here is inspired by such versions and it
has close similarities with a subcase of hierarchic superposition calculus [BGW94],
or rather to its “weak abstraction” variant from [BW13].

The rules of our Constrained Superposition Calculus (SuperCover) follow; each
rule applies provided the E subprocedure called by it does not fail. The symbol ⊥
indicates the empty clause. Further explanations and restrictions to the calculus
are given in the Remarks below.

“weak abstraction” variant from [6] (we thank an anonymous referee of our CADE
2019 submission for pointing out this connection).

The rules of our Constrained Superposition Calculus follow; each rule applies
provided the E subprocedure called by it does not fail. The symbol ? indicates
the empty clause. Further explanations and restrictions to the calculus are given
in the Remarks below.
Superposition Right

(Constrained)
l = r k C s = t k D

s[r]p = t k C [ D [ E(s|p, l)
if l > r and s > t

Superposition Left
(Constrained)

l = r k C s 6= t k D

s[r]p 6= t k C [ D [ E(s|p, l)
if l > r and s > t

Reflection
(Constrained)

t 6= u k C

? k C [ E(t, u)

Demodulation
(Constrained)

L k C, l = r kD
L[r]p k C

if l > r, L|p ⌘ l
and C ◆ D

Remark 5.1. The first three rules are inference rules: they are non-deterministic-
ally selected for application, until no rule applies anymore. The selection strategy
for the rule to be applied is not relevant for the correctness and completeness
of the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation). /

Remark 5.2. The Demodulation rule is a simplification rule: its application not
only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules. /

Remark 5.3. The calculus takes {Lk; | L is a flat literal from the matrix of �}
as the initial set of constrained literals. It terminates when a saturated set of con-
strained literals is reached. We say that S is saturated i↵ every constrained literal
that can be produced by an inference rule, after being exhaustively simplified via
Demodulation, is already in S (there are more sophisticated notions of ‘saturation
up to redundancy’ in the literature, but we do not need them). When it reaches
a saturated set S, the algorithm outputs the conjunction of the clauses

V
C ! L,

varying L kC among the e-free constrained literals from S. /

We need some rule application policy to ensure termination: without any such
policy, a set like

{e = y k ;, f(e) = ek ;} (4)

may produce by Right Superposition the infinitely many literals (all oriented from
right to left) f(y) = e k ;, f(f(y)) = e k ;, f(f(f(y))) = e k ;, etc. The next remark
explains the policy we follow.

Remark 5.4. [Policy Remark] We apply Demodulation only in case the sec-
ond premise is of the kind ej = t(y) kD, where t is e-free. Demodulation rule is

applied with higher priority with respect to the inference rules.6 Inside all possible
applications of Demodulation rule, we give priority to the applications where both

6 Thus we cannot apply Superposition to {e = y k ;, f(e) = ek ;} until Demodulation is
exhaustively applied (the latter causes the deletion of f(e) = ek ; and its replacement with
f(y) = yk ;, thus blocking the above generation of infinitely many clauses).
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the algorithm (some variant of a ‘given clause algorithm’ can be applied). An
inference rule is not applied in case one premise is e-free (we have no reason to
apply inferences to e-free premises, since we are not looking for a refutation).
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Remark 7.3.2. The Demodulation rule is a simplification rule: its application
not only adds the conclusion to the current set of constrained literals, but it also
removes the first premise. It is easy to see (e.g., representing literals as multisets
of terms and extending the total reduction ordering to multisets), that one cannot
have an infinite sequence of consecutive applications of Demodulation rules.

Remark 7.3.3. The calculus takes {L‖∅ | L is a flat literal from the matrix of
φ} as the initial set of constrained literals. It terminates when a saturated set of
constrained literals is reached. We say that S is saturated iff every constrained literal
that can be produced by an inference rule, after being exhaustively simplified via
Demodulation, is already in S (there are more sophisticated notions of ‘saturation
up to redundancy’ in the literature, but we do not need them). When it reaches
a saturated set S, the algorithm outputs the conjunction of the clauses ∧C → L,
varying L ‖C among the e-free constrained literals from S.

We need some rule application policy to ensure termination: without any such
policy, a set like

{e = y ‖ ∅, f(e) = e‖ ∅} (7.3)

may produce by Right Superposition the infinitely many literals (all oriented from
right to left) f(y) = e ‖ ∅, f(f(y)) = e ‖ ∅, f(f(f(y))) = e ‖ ∅, etc. The next
remark explains the policy we follow.

Remark 7.3.4. [Policy Remark] We apply Demodulation only in case the second
premise is of the kind ej = t(y) ‖D, where t is e-free. Demodulation is applied with
higher priority with respect to the inference rules.3 Inside all possible applications
of Demodulation, we give priority to the applications where both premises have
the form ej = t(y) ‖D (for the same ej but with possibly different D’s - the D
from the second premise being included in the D of the first). In case we have two
constrained literals of the kind ej = t1(y) ‖D, ej = t2(y) ‖D inside our current set of
constrained literals (notice that the ej ’s and the D’s here are the same), among the
two possible applications of the Demodulation rule, we apply the rule that keeps
the smallest ti. Notice that in this way two different constrained literals cannot
simplify each other.

We say that a constrained literal L ‖C belonging to a set of constrained literals
S is simplifiable in S iff it is possible to apply (according to the above policy) a
Demodulation rule removing it. A first effect of our policy is:

Lemma 7.3.2. If a constrained literal L ‖C is simplifiable in S, then after applying
to S any sequence of rules, it remains simplifiable until it gets removed. After being
removed, if it is regenerated, it is still simplifiable and so it is eventually removed
again.

3Thus we cannot apply Superposition to {e = y ‖ ∅, f(e) = e‖ ∅} until Demodulation is
exhaustively applied (the latter causes the deletion of f(e) = e‖ ∅ and its replacement with
f(y) = y‖ ∅, thus blocking the above generation of infinitely many clauses).
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Proof. Suppose that L ‖C can be simplified by e = t ‖D and suppose that a rule
is applied to the current set of constrained literals. Since there are simplifiable
constrained literals, that rule cannot be an inference rule by the priority stated in
Remark 7.3.4. For simplification rules, keep in mind again Remark 7.3.4. If L ‖C is
simplified, it is removed; if none of L ‖C and e = t ‖D get simplified, the situation
does not change; if e = t ‖D gets simplified, this can be done by some e = t′‖D′,
but then L ‖C is still simplifiable - although in a different way - using e = t′‖D′ (we
have that D′ is included in D, which is in turn included in C). Similar observations
apply if L ‖C is removed and re-generated.

Due to Lemma 7.3.2, if we show that a derivation (i.e., a sequence of applications
of rules) can produce terms only from a finite set, it is clear that when no new
constrained literal is produced, saturation is reached. First notice that:

Lemma 7.3.3. Every constrained literal L ‖C produced during the run of the
algorithm is e-flat.

Proof. The constrained literals from initialization are e-flat. The Demodulation
rule, applied according to Remark 7.3.4, produces an e-flat literal out of an e-flat
literal. The same happens for the Superposition rules: in fact, since both the terms
s and l from these rules are e-flat, a Superposition may take place at root position
or may rewrite some l ≡ ej with r ≡ ei or with r ≡ t(y).4

There are in principle infinitely many e-flat terms that can be generated out
of the e-flat terms occurring in φ (see the above counterexample (7.3)). We show
however that only finitely many e-flat terms can in fact occur during saturation
and that one can determine in advance the finite set they are taken from.

To formalize this idea, let us introduce a hierarchy of e-flat terms (this hierarchy
concerns terms, not clauses or constraints - although it will be used to delimit
the kind of clauses or constraints that might occur in a saturation process). Let
D0 be the e-flat terms occurring in φ and let Dk+1 be the set of e-flat terms
obtained by simultaneous rewriting of an e-flat term from ⋃

i≤kDi via rewriting
rules of the kind ej → tj(y) where the tj are e-free terms from ⋃

i≤kDi. The
degree of an e-flat term is the minimum k such that it belongs to set Dk (it is
necessary to take the minimum because the same term can be obtained at different
stages and via different rewritings).

4Notice that Superposition Left is considerably restricted in our calculus: recall in fact that
e-flat negative literals must be of the kind s 6= t where s, t are either variables from e or e-free
terms. Since rules do not apply to e-free literals, the only possibility is that the term s from the
literal s 6= t of the right premise of Superposition Left is a variable from e and that the term
l from the left premise concides with it. Thus Superposition Left looks like a Demodulation,
however it is not a Demodulation because the constraint of its left premise may not be included
into the constraint of its right premise. It would be harmless to allow a more liberal version of
Superposition Left, but we do not need it.
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Lemma 7.3.4. Let the e-flat term t′ be obtained by a rewriting ej → u(y) from
the e-flat term t; then, if t has degree k > 1 and u has degree at most k − 1, we
have that t′ has degree at most k.

Proof. This is clear, because at the k-stage one can directly produce t′ instead of just
t: in fact, all rewriting producing directly t′ replace an occurrence of some ei by an
e-free term, so they are all done in parallel positions. [We illustrate the phenomenon
via an example: suppose that t is f(e1, g(g(c))) and that t′ is obtained from t by
rewriting e1 to g(c). Now it might well be that t has degree 2, being obtained from
f(e1, e2) via e2 7→ g(g(c))) (the latter having been previously obtained from g(e3)
via e3 7→ g(c)). Now t′ still has degree 2 because it can be directly obtained from
f(e1, e2) via the parallel rewritings e1 7→ g(c), e2 7→ g(g(c))).]

Proposition 7.3.5. The saturation of the initial set of e-flat constrained literals
always terminates after finitely many steps.

Proof. We show that all e-flat terms that may occur during saturation have at
most degree n (where n is the cardinality of e). This shows that the saturation
must terminate, because only finitely many terms may occur in a derivation (see
the above observations). Let the algorithm during saturation reach the state S;
we say that a constraint C allows the explicit definition of ej in S iff S contains a
constrained literal of the kind ej = t(y) ‖D with D ⊆ C. Now we show by mutual
induction two facts concerning a constrained literal L ‖C ∈ S:
(1) if an e-flat term u of degree k occurs in L, then C allows the explicit definition

of k different ej in S;
(2) if L is of the kind ei = t(y), for an e-free term t of degree k, then either ei = t ‖C

can be simplified in S or C allows the explicit definition of k + 1 different ej in
S (ei itself is of course included among these ej).

Notice that (1) is sufficient to exclude that any e-flat term of degree bigger than n
can occur in a constrained literal arising during the saturation process.

We prove (1) and (2) by induction on the length of the derivation leading to
L ‖C ∈ S. Notice that it is sufficient to check that (1) and (2) hold for the first time
where L ‖C ∈ S because if C allows the explicit definition of a certain variable in
S, it will continue to do so in any S ′ obtained from S by continuing the derivation
(the definition may be changed by the Demodulation rule, but the fact that ei is
explicitly defined is forever). Also, by Lemma 7.3.2, a literal cannot become not
simplifiable if it is simplifiable.

(1) and (2) are evident if S is the initial status. To show (1), suppose that u
occurs for the first time in L ‖C as the effect of the application of a certain rule:
we can freely assume that u does not occur in the literals from the premisses of the
rule (otherwise induction trivially applies) and that u of degree k is obtained by
rewriting in a non-root position some u′ occurring in a constrained literal L′ ‖D′
via some ej → t ‖D. This might be the effect of a Demodulation or Superposition
in a non-root position (Superpositions in root position do not produce new terms).
If u′ has degree k, then by induction D′ contains the required k explicit definitions,
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and we are done because D′ is included in C. If u′ has lower degree, then t must
have degree at least k − 1 (otherwise u does not reach degree k by Lemma 7.3.4).
Then by induction on (2), the constraint D (also included in C) has (k− 1) + 1 = k

explicit definitions (when a constraint ej → t ‖D is selected for Superposition or for
making Demodulations in a non-root position, it is itself not simplifiable according
to the procedure explained in Remark 7.3.4).

To show (2), we analyze the reasons why the nonsimplifiable constrained literal
ei = t(y) ‖C is produced (let k be the degree of t). Suppose it is produced from
ei = u′ ‖C via Demodulation with ej = u(y) ‖D (with D ⊆ C) in a non-root
position; if u′ has degree at least k, we apply induction for (1) to ei = u′ ‖C:
by such induction hypotheses, we get k explicit definitions in C and we can add
to them the further explicit definition ei = t(y) (the explicit definitions from C

cannot concern ei because ei = t(y) ‖C is not simplifiable). Otherwise, u′ has
degree less than k and u has degree at least k − 1 by Lemma 7.3.4 (recall that t
has degree k): by induction, ej = u ‖D is not simplifiable (it is used as the active
part of a Demodulation in a non-root position, see Remark 7.3.4) and supplies k
explicit definitions, inherited by C ⊇ D. Note that ei cannot have a definition in
D, otherwise ei = t(y) ‖C would be simplifiable, so with ei = t(y) ‖C we get the
required k + 1 definitions.

The remaining case is when ei = t(y) ‖C is produced via Superposition Right.
Such a Superposition might be at root or at a non-root position. We first analyze
the case of a root position. This might be via ej = ei ‖C1 and ej = t(y) ‖C2
(with ej > ei and C = C1 ∪ C2 because E(ej, ej) = ∅), but in such a case one can
easily apply induction. Otherwise, we have a different kind of Superposition at
root position: ei = t(y) ‖C is obtained from s = ei ‖C1 and s′ = t(y) ‖C2, with
C = C1 ∪ C2 ∪ E(s, s′). In this case, by induction for (1), C2 supplies k explicit
definitions, to be inherited by C. Among such definitions, there cannot be an
explicit definition of ei otherwise ei = t(y) ‖C would be simplifiable, so again we
get the required k + 1 definitions.

In case of a Superposition at a non-root-position, we have that ei = t(y) ‖C is
obtained from u′ = ei ‖C1 and ej = u(y) ‖C2, with C = C1 ∪ C2; here t is obtained
from u′ by rewriting ej to u. This case is handled similarly to the case where
ei = t(y) ‖C is obtained via Demodulation rule.

Having established termination, we now prove that our calculus computes covers.
To this aim, we rely on refutational completeness of unconstrained Superposition
Calculus: thus, our technique resembles the technique used [BGW94; BW13] in
order to prove refutational completeness of hierarchic superposition, although it is
not clear whether Theorem 7.3.6 below can be derived from the results concerning
hierarchic superposition5. We state the following theorem:

5An important difference between our proof and the proof of completeness for hierarchic
superposition is that we must build an expansion of a superstructure of the model M below
(expandingM to a larger signature without enlarging its domain might not be possible in principle).
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Theorem 7.3.6. Let T be the theory EUF . Suppose that the above algorithm,
taking as input the primitive e-flat formula ∃e φ(e, y), gives as output the quantifier-
free formula ψ(y). Then the latter is a T -cover of ∃e φ(e, y).

Proof. Let S be the saturated set of constrained literals produced upon termination
of the algorithm; let S = S1 ∪ S2, where S1 contains the constrained literals in
which the e do not occur and S2 is its complement. Clearly ∃e φ(e, y) turns out to
be logically equivalent to∧

L ‖C∈S1

(
∧
C → L) ∧ ∃e

∧
L ‖C∈S2

(
∧
C → L)

so, as a consequence, in view of Lemma 7.1.1 it is sufficient to show that every
modelM satisfying ∧L ‖C∈S1(∧C → L) via an assignment I to the variables y can
be embedded into a model M′ such that for a suitable extension I ′ of I to the
variables e we have that (M′, I ′) satisfies also ∧L ‖C∈S2(∧C → L).

FixM, I as above. The diagram ∆(M) ofM is obtained as follows. We take
one free constant for each element of the support of M (by Löwenheim-Skolem
theorem one can keepM at most countable, if one likes) and we put in ∆(M) all
the literals of the kind f(c1, . . . , ck) = ck+1 and c1 6= c2 which are true inM (here
the ci are names for the elements of the support ofM). Let R be the set of ground
equalities of the form yi = ci, where ci is the name of I(yi). Extend our reduction
ordering in the natural way (so that yi = ci and f(c1, . . . , ck) = ck+1 are oriented
from left to right). Consider now the set of clauses

∆(M) ∪ R ∪ {
∧
C → L | (L ‖C) ∈ S} (7.4)

(below, we distinguish the positive and the negative literals of ∆(M) so that
∆(M) = ∆+(M) ∪∆−(M)). We want to saturate the above set in the standard
Superposition Calculus. Clearly the rewriting rules in R, used as reduction rules,
replace everywhere yi by ci inside the clauses of the kind ∧C → L. At this point,
the negative literals from the equality constraints all disappear: if they are true in
M, they ∆+(M)-normalize to trivial equalities ci = ci (to be eliminated by standard
reduction rules) and if they are false inM they become part of clauses subsumed
by true inequalities from ∆−(M). Similarly all the e-free literals not coming from
∆(M)∪R get removed. Let S̃ be the set of survived literals involving the e (they are
not constrained anymore and they are ∆+(M)∪R-normalized): we show that they
cannot produce new clauses. Let in fact (π) be an inference from the Superposition
Calculus [NR01] applying to them. Since no superposition with ∆(M)∪R is possible,
this inference must involve only literals from S̃; suppose it produces a literal L̃ from
the literals L̃1, L̃2 (coming via ∆+(M) ∪ R-normalization from L1 ‖C1 ∈ S and
L2 ‖C2 ∈ S) as parent clauses. Then, by Lemma 7.3.1, our constrained inferences
produce a constrained literal L ‖C such that the clause ∧C → L normalizes
to L̃ via ∆+(M) ∪ R. Since S is saturated, the constrained literal L ‖C, after
simplification, belongs to S. Now simplifications via our Constrained Demodulation
and ∆(M)+ ∪ R-normalization commute (they work at parallel positions, see
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Remark 7.3.4), so the inference (π) is redundant because L̃ simplifies to a literal
already in S̃ ∪∆(M).

Thus the set of clauses (7.4) saturates without producing the empty clause. By
the completeness theorem of the Superposition Calculus [HR91; BG94; NR01] it
has a modelM′. ThisM′ by construction fits our requests by Robinson Diagram
Lemma.

Theorem 7.3.6, thanks to the relationship between model completions and covers
stated in Theorem 7.1.2, proves also the existence of the model completion of EUF .

Example 7.3.12

We compute the cover of the primitive formula ∃e f(f(e, y1), y2) 6= f(f(e, y′1), y′2).
Flattening gives the set of literals

{ f(e, y1) = e1, f(e1, y2) = e′1, f(e, y′1) = e2, f(e2, y
′
2) = e′2, e

′
1 6= e′2 } .

Superposition Right produces the constrained literal e1 = e2 ‖ {y1 = y′1};
supposing that we have e1 > e2, Superposition Right gives first f(e2, y2) =
e′1 ‖ {y1 = y′1} and then also e′1 = e′2 ‖ {y1 = y′1, y2 = y′2}. Superposition
Left and Reflection now produce ⊥‖{y1 = y′1, y2 = y′2}. Thus the clause
y1 = y′1 ∧ y2 = y′2 → ⊥ will be part of the output (actually, this will be the only
clause in the output).

We apply our algorithm to an additional example, taken from [GM08].

Example 7.3.13

We compute the cover of the primitive formula ∃e (s1 = f(y3, e)∧s2 = f(y4, e)∧
t = f(f(y1, e), f(y2, e))), where s1, s2, t are terms in y. Flattening gives the set
of literals

{ f(y3, e) = s1, f(y4, e) = s2, f(y1, e) = e1, f(y2, e) = e2, f(e1, e2) = t } .

Suppose that we have e > e1 > e2 > t > s1 > s2 > y1 > y2 > y3 >
y4. Superposition Right between the 3rd and the 4th clauses produces the
constrained 6th clause e1 = e2 ‖ {y1 = y2}. From now on, we denote the
application of a Superposition Right to the ith and jth clauses with R(i, j). We
list a derivation performed by our calculus:

R(3, 4) =⇒ e1 = e2 ‖ {y1 = y2} (6th clause)

R(1, 2) =⇒ s1 = s2 ‖ {y3 = y4} (7th clause)

R(5, 6) =⇒ f(e2, e2) = t ‖ {y1 = y2} (8th clause)
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R(1, 3) =⇒ e1 = s1 ‖ {y1 = y3} (9th clause)

R(1, 4) =⇒ e2 = s1 ‖ {y2 = y3} (10th clause)

R(2, 3) =⇒ e1 = s2 ‖ {y1 = y4} (11th clause)

R(2, 4) =⇒ e2 = s2 ‖ {y2 = y4} (12th clause)

R(5, 9) =⇒ f(s1, e2) = t ‖ {y1 = y3} (13th clause)

R(5, 11) =⇒ f(s2, e2) = t ‖ {y1 = y4} (14th clause)

R(6, 9) =⇒ e2 = s1 ‖ {y1 = y3, y1 = y2} (15th clause)

R(6, 11) =⇒ e2 = s2 ‖ {y1 = y2, y1 = y4} (16th clause)

R(8, 10) =⇒ f(s1, s1) = t ‖ {y1 = y3, y2 = y3} (17th clause)

R(8, 12) =⇒ f(s2, s2) = t ‖ {y1 = y4, y2 = y4} (18th clause)

R(13, 12) =⇒ f(s1, s2) = t ‖ {y1 = y3, y2 = y4} (19th clause)

R(14, 10) =⇒ f(s2, s1) = t ‖ {y1 = y4, y2 = y3} (20th clause)

R(9, 11) =⇒ s1 = s2 ‖ {y1 = y3, y1 = y4} (21th clause)

The set of clauses above is saturated. The 7th, 17th, 18th, 19th and 20th clauses
are exactly the output clauses of [GM08]. The non-simplified clauses that do
not appear as output in [GM08] are redundant and they could be simplified
by introducing a Subsumption rule as an additional simplification rule of our
calculus.

7.4 Complexity Analysis of the Fragment for
Database Driven Applications

The saturation procedure of Theorem 7.3.6 can in principle produce double
exponentially many clauses, because there are exponentially many terms of degree
n (if n is the cardinality of the variables to be eliminated); it is not clear whether
we can improve this bound to a simple exponential one, by limiting the kind of
terms that can be produced. An estimation of the complexity costs of computing
uniform interpolants in EUF is better performed within approaches making use of
compressed DAG-representations of terms [GGK20a]. In this thesis, however, we
are especially interested (for our applications to DAP verification) in the special
case where the signature Σ contains only unary function symbols and relations of
arbitrary arity: in fact, this is exactly the kind of symbols appearing in DB schemas
(cf. Section 3.1 and Subsection 7.2.1). In this special case, important remarks apply.
In fact, we shall see below that if the signature Σ contains only unary function
symbols, only empty constraints can be generated; in case Σ contains also relation
symbols of arity n > 1, the only constrained clauses that can be generated have the
form ⊥‖{t1 = t′1, . . . , tn−1 = t′n−1}. Also, it is not difficult to see that in a derivation
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at most one explicit definition ei = t(y)||∅ can occur for every ei: as soon as this
definition is produced, all occurrences of ei are rewritten to t. This implies that
Constrained Superposition computes covers in polynomial time for the empty theory,
whenever the signature Σ matches the restrictions of Definition 3.1.1 for DB schemas.
We give here a finer complexity analysis, in order to obtain a quadratic bound.

In this section, we assume that our signature Σ contains only unary function
and m-ary relation symbols. In order to attain the optimized quadratic complexity
bound, we need to follow a different strategy in applying the rules of our constrained
superposition calculus (this different strategy would not be correct for the general
case). Thanks to this different strategy, we can make our procedure close to the
algorithm of [GM08]: in fact, such algorithm is correct for the case of unary functions
and requires only a minor adjustment for the case of unary functions and m-ary
relations. Since relations play a special role in the present restricted context, we
prefer to treat them as such, i.e. not to rewrite R(t1, . . . , tn) as R(t1, . . . , tn) = true;
the consequence is that we need an additional Constrained Resolution Rule6. We
preliminarily notice that when function symbols are all unary, the constraints remain
all empty during the run of the saturation procedure, except for the case of the
newly introduced Resolution Rule below. This fact follows from the observation
that given two terms u1 and u2, procedure E(u1, u2) does not fail iff:
(1) either u1 and u2 are both terms containing only variables from y, or
(2) u1 and u2 are terms that syntactically coincide.
In case (1), E(u1, u2) is {u1 = u2} and in case (2), E(u1, u2) is ∅. In case (1),
Superposition Rules are not applicable. To show this, suppose that u1 ≡ s|p and
u2 ≡ l; then, terms l and r use only variables from y, and consequently cannot
be fed into Superposition Rules, since Superposition Rules are only applied when
variables from e occur in both premises. Reflection Rule does not apply too in case
(1), because this rule (like any other rule) cannot be applied to an e-free literal.

Thus, in the particular case of m-ary relations and unary functions, the rules
of the calculus are the following:

Superposition
l = r L

L[r]p
if (i) l > r;

(ii) if L ⌘ s = t or
L ⌘ s 6= t, then
s > t and p 2 Pos(s);

(iii) E(s|p, l) does not fail.

Resolution
R(t1, . . . , tn) ¬R(s1, . . . , sn)

? k S
i E(si, ti)

if E(si, ti) does not fail
for all i = 1, . . . , n

Reflection
t 6= u

? if E(t, u) does not fail

Demodulation
L l = r

L[r]p
if l > r and L|p ⌘ l

We still restrict the use of our rules to the case where all premises are not
e-free literals; again Demodulation is applied only in the case where l = r is of
the kind ei = t(y). For the order of applications of the Rules, Lemma 6.1 below
show that we can apply (restricted) Superpositions, Demodulations, Reflections
and Resolutions in this order and then stop.

An important preliminary observation to obtain such a result is that we do not
need to apply Superposition Rules whose left premise l = r is of the kind ei = t(y):
this is because constraints are always empty (unless the constrained clause is the
empty clause), so that a Superposition Rule with the left premise ei = t(y) can

be replaced by a Demodulation Rule. 10 If the left premise of Superposition is not
of the kind ei = t(y), then since our literals are e-flat, it can be either of the kind
ei = ej (with ei > ej) or of the kind f(ei) = t. In the latter case t is either ek 2 e
or it is an e-free term; for Superposition Left (i.e. for Superposition applied to a
negative literal), the left premise can only be ei = ej , because our literals are e-flat
and so negative literals L cannot have a position p such that L|p ⌘ f(ei).

Let S be a set of e-flat literals with empty constraints; we say that S is RS-
closed i↵ it is closed under Restricted Superposition Rules, i.e under Superposition
Rules whose left premise is not of the kind ei = t(y). In equivalent terms, as a
consequence of the above discussion, S is RS-closed i↵ it satisfies the following two
conditions:

– if {f(ei) = t, f(ei) = v} ✓ S, then t = v 2 S;
– if {ei = ej , L} ✓ S and ei > ej and L|p ⌘ ei, then L[ej ]p 2 S.

Since Restricted Superpositions do not introduce essentially new terms (newly
introduced terms are just rewritings of variables with variables), it is clear that
we can make a finite set S of e-free literals RS-closed in finitely many steps. This
can be naively done in time quadratic in the size of the formula. As an alternative,
we can apply a congruence closure algorithm to S and produce a set of e-free
constraints S0 which is RS-closed and logically equivalent to S: the latter can be
done in O(n · log(n))-time, as it is well-known from the literature [49,53,41].

Lemma 6.1. Let S be a RS-closed set of empty-constrained e-flat literals. Then,
to saturate S it is su�cient to first exhaustively apply the Demodulation Rule, and
then Reflection and Resolution Rules. /

10 This is not true in the general case where constraints are not empty, because the Demod-
ulation Rule does not merge incomparable constraints.
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Superposition
l = r L

L[r]p
if (i) l > r;

(ii) if L ⌘ s = t or
L ⌘ s 6= t, then
s > t and p 2 Pos(s);

(iii) E(s|p, l) does not fail.

Resolution
R(t1, . . . , tn) ¬R(s1, . . . , sn)

? k S
i E(si, ti)

if E(si, ti) does not fail
for all i = 1, . . . , n

Reflection
t 6= u

? if E(t, u) does not fail

Demodulation
L l = r

L[r]p
if l > r and L|p ⌘ l

We still restrict the use of our rules to the case where all premises are not
e-free literals; again Demodulation is applied only in the case where l = r is of
the kind ei = t(y). For the order of applications of the Rules, Lemma 6.1 below
show that we can apply (restricted) Superpositions, Demodulations, Reflections
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An important preliminary observation to obtain such a result is that we do not
need to apply Superposition Rules whose left premise l = r is of the kind ei = t(y):
this is because constraints are always empty (unless the constrained clause is the
empty clause), so that a Superposition Rule with the left premise ei = t(y) can

be replaced by a Demodulation Rule. 10 If the left premise of Superposition is not
of the kind ei = t(y), then since our literals are e-flat, it can be either of the kind
ei = ej (with ei > ej) or of the kind f(ei) = t. In the latter case t is either ek 2 e
or it is an e-free term; for Superposition Left (i.e. for Superposition applied to a
negative literal), the left premise can only be ei = ej , because our literals are e-flat
and so negative literals L cannot have a position p such that L|p ⌘ f(ei).

Let S be a set of e-flat literals with empty constraints; we say that S is RS-
closed i↵ it is closed under Restricted Superposition Rules, i.e under Superposition
Rules whose left premise is not of the kind ei = t(y). In equivalent terms, as a
consequence of the above discussion, S is RS-closed i↵ it satisfies the following two
conditions:

– if {f(ei) = t, f(ei) = v} ✓ S, then t = v 2 S;
– if {ei = ej , L} ✓ S and ei > ej and L|p ⌘ ei, then L[ej ]p 2 S.

Since Restricted Superpositions do not introduce essentially new terms (newly
introduced terms are just rewritings of variables with variables), it is clear that
we can make a finite set S of e-free literals RS-closed in finitely many steps. This
can be naively done in time quadratic in the size of the formula. As an alternative,
we can apply a congruence closure algorithm to S and produce a set of e-free
constraints S0 which is RS-closed and logically equivalent to S: the latter can be
done in O(n · log(n))-time, as it is well-known from the literature [49,53,41].

Lemma 6.1. Let S be a RS-closed set of empty-constrained e-flat literals. Then,
to saturate S it is su�cient to first exhaustively apply the Demodulation Rule, and
then Reflection and Resolution Rules. /

10 This is not true in the general case where constraints are not empty, because the Demod-
ulation Rule does not merge incomparable constraints.
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6We extend the definition of an e-flat literal so as to include also the literals of the kind
R(t1, .., tn) and ¬R(t1, .., tn) where the terms ti are either e-free terms or variables from e.
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Superposition
l = r L

L[r]p
if (i) l > r;

(ii) if L ⌘ s = t or
L ⌘ s 6= t, then
s > t and p 2 Pos(s);

(iii) E(s|p, l) does not fail.

Resolution
R(t1, . . . , tn) ¬R(s1, . . . , sn)

? k S
i E(si, ti)

if E(si, ti) does not fail
for all i = 1, . . . , n

Reflection
t 6= u

? if E(t, u) does not fail

Demodulation
L l = r

L[r]p
if l > r and L|p ⌘ l

We still restrict the use of our rules to the case where all premises are not
e-free literals; again Demodulation is applied only in the case where l = r is of
the kind ei = t(y). For the order of applications of the Rules, Lemma 6.1 below
show that we can apply (restricted) Superpositions, Demodulations, Reflections
and Resolutions in this order and then stop.

An important preliminary observation to obtain such a result is that we do not
need to apply Superposition Rules whose left premise l = r is of the kind ei = t(y):
this is because constraints are always empty (unless the constrained clause is the
empty clause), so that a Superposition Rule with the left premise ei = t(y) can

be replaced by a Demodulation Rule. 10 If the left premise of Superposition is not
of the kind ei = t(y), then since our literals are e-flat, it can be either of the kind
ei = ej (with ei > ej) or of the kind f(ei) = t. In the latter case t is either ek 2 e
or it is an e-free term; for Superposition Left (i.e. for Superposition applied to a
negative literal), the left premise can only be ei = ej , because our literals are e-flat
and so negative literals L cannot have a position p such that L|p ⌘ f(ei).

Let S be a set of e-flat literals with empty constraints; we say that S is RS-
closed i↵ it is closed under Restricted Superposition Rules, i.e under Superposition
Rules whose left premise is not of the kind ei = t(y). In equivalent terms, as a
consequence of the above discussion, S is RS-closed i↵ it satisfies the following two
conditions:

– if {f(ei) = t, f(ei) = v} ✓ S, then t = v 2 S;
– if {ei = ej , L} ✓ S and ei > ej and L|p ⌘ ei, then L[ej ]p 2 S.

Since Restricted Superpositions do not introduce essentially new terms (newly
introduced terms are just rewritings of variables with variables), it is clear that
we can make a finite set S of e-free literals RS-closed in finitely many steps. This
can be naively done in time quadratic in the size of the formula. As an alternative,
we can apply a congruence closure algorithm to S and produce a set of e-free
constraints S0 which is RS-closed and logically equivalent to S: the latter can be
done in O(n · log(n))-time, as it is well-known from the literature [49,53,41].

Lemma 6.1. Let S be a RS-closed set of empty-constrained e-flat literals. Then,
to saturate S it is su�cient to first exhaustively apply the Demodulation Rule, and
then Reflection and Resolution Rules. /

10 This is not true in the general case where constraints are not empty, because the Demod-
ulation Rule does not merge incomparable constraints.
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Superposition
l = r L

L[r]p
if (i) l > r;

(ii) if L ⌘ s = t or
L ⌘ s 6= t, then
s > t and p 2 Pos(s);

(iii) E(s|p, l) does not fail.

Resolution
R(t1, . . . , tn) ¬R(s1, . . . , sn)

? k S
i E(si, ti)

if E(si, ti) does not fail
for all i = 1, . . . , n

Reflection
t 6= u

? if E(t, u) does not fail

Demodulation
L l = r

L[r]p
if l > r and L|p ⌘ l

We still restrict the use of our rules to the case where all premises are not
e-free literals; again Demodulation is applied only in the case where l = r is of
the kind ei = t(y). For the order of applications of the Rules, Lemma 6.1 below
show that we can apply (restricted) Superpositions, Demodulations, Reflections
and Resolutions in this order and then stop.

An important preliminary observation to obtain such a result is that we do not
need to apply Superposition Rules whose left premise l = r is of the kind ei = t(y):
this is because constraints are always empty (unless the constrained clause is the
empty clause), so that a Superposition Rule with the left premise ei = t(y) can

be replaced by a Demodulation Rule. 10 If the left premise of Superposition is not
of the kind ei = t(y), then since our literals are e-flat, it can be either of the kind
ei = ej (with ei > ej) or of the kind f(ei) = t. In the latter case t is either ek 2 e
or it is an e-free term; for Superposition Left (i.e. for Superposition applied to a
negative literal), the left premise can only be ei = ej , because our literals are e-flat
and so negative literals L cannot have a position p such that L|p ⌘ f(ei).

Let S be a set of e-flat literals with empty constraints; we say that S is RS-
closed i↵ it is closed under Restricted Superposition Rules, i.e under Superposition
Rules whose left premise is not of the kind ei = t(y). In equivalent terms, as a
consequence of the above discussion, S is RS-closed i↵ it satisfies the following two
conditions:

– if {f(ei) = t, f(ei) = v} ✓ S, then t = v 2 S;
– if {ei = ej , L} ✓ S and ei > ej and L|p ⌘ ei, then L[ej ]p 2 S.

Since Restricted Superpositions do not introduce essentially new terms (newly
introduced terms are just rewritings of variables with variables), it is clear that
we can make a finite set S of e-free literals RS-closed in finitely many steps. This
can be naively done in time quadratic in the size of the formula. As an alternative,
we can apply a congruence closure algorithm to S and produce a set of e-free
constraints S0 which is RS-closed and logically equivalent to S: the latter can be
done in O(n · log(n))-time, as it is well-known from the literature [49,53,41].

Lemma 6.1. Let S be a RS-closed set of empty-constrained e-flat literals. Then,
to saturate S it is su�cient to first exhaustively apply the Demodulation Rule, and
then Reflection and Resolution Rules. /

10 This is not true in the general case where constraints are not empty, because the Demod-
ulation Rule does not merge incomparable constraints.
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We still restrict the use of our rules to the case where all premises are not
e-free literals; again Demodulation is applied only in the case where l = r is of
the kind ei = t(y). For the order of applications of the Rules, Lemma 7.4.1 below
show that we can apply (restricted) Superpositions, Demodulations, Reflections
and Resolutions in this order and then stop.

An important preliminary observation to obtain such a result is that we do not
need to apply Superposition Rules whose left premise l = r is of the kind ei = t(y):
this is because constraints are always empty (unless the constrained clause is the
empty clause), so that a Superposition Rule with the left premise ei = t(y) can be
replaced by a Demodulation Rule. 7 If the left premise of Superposition is not of
the kind ei = t(y), then since our literals are e-flat, it can be either of the kind
ei = ej (with ei > ej) or of the kind f(ei) = t. In the latter case t is either ek ∈ e
or it is an e-free term; for Superposition Left (i.e. for Superposition applied to a
negative literal), the left premise can only be ei = ej, because our literals are e-flat
and so negative literals L cannot have a position p such that L|p ≡ f(ei).

Let S be a set of e-flat literals with empty constraints; we say that S is RS-closed
iff it is closed under Restricted Superposition Rules, i.e under Superposition Rules
whose left premise is not of the kind ei = t(y). In equivalent terms, as a consequence
of the above discussion, S is RS-closed iff it satisfies the following two conditions:

• if {f(ei) = t, f(ei) = v} ⊆ S, then t = v ∈ S;
• if {ei = ej, L} ⊆ S and ei > ej and L|p ≡ ei, then L[ej]p ∈ S.

Since Restricted Superpositions do not introduce essentially new terms (newly
introduced terms are just rewritings of variables with variables), it is clear that we
can make a finite set S of e-free literals RS-closed in finitely many steps. This can be
naively done in time quadratic in the size of the formula. As an alternative, we can
apply a congruence closure algorithm to S and produce a set of e-free constraints
S ′ which is RS-closed and logically equivalent to S: the latter can be done in
O(n · log(n))-time, as it is well-known from the literature [NO80; NO07; Kap97].

Lemma 7.4.1. Let S be a RS-closed set of empty-constrained e-flat literals. Then,
to saturate S it is sufficient to first exhaustively apply the Demodulation Rule, and
then Reflection and Resolution Rules.

Proof. Let S̃ be the set obtained from S after having exhaustively applied Demod-
ulation. Notice that the final effect of the reiterated application of Demodulation

7This is not true in the general case where constraints are not empty, because the Demodulation
Rule does not merge incomparable constraints.



166 7.4. Complexity Analysis of the Fragment for Database Driven Applications

can be synthetically described by saying that literals in S are rewritten by using
some explicit definitions

ei1 = t1(y), . . . , eik = tk(y) . (7.5)

These definitions are either in S, or are generated through the Demodulations
themselves (we can freely assume that Demodulations are done in appropriate order:
first all occurrences of ei1 are rewritten to t1, then all occurrences of ei2 are rewritten
to t2, etc.).8

Suppose now that a pair L, l = r ∈ S̃ can generate a new literal L[r]p by
Superposition. We know from above that we can limit ourselves to Restricted
Superposition, so l is either of the form ej or of the form f(ej), where moreover
ej is not among the set {ei1 , . . . , eik} from (7.5). The literals L and l = r ∈ S̃

happen to have been obtained from literals L′ and l = r′ belonging to S by applying
the rewriting rules (7.5) (notice that l cannot have been rewritten). Since such
rewritings must have occurred in positions parallel to p and since S was closed
under Restricted Superposition, we must have that S contained the literal L′[r′]p
that rewrites to L[r]p by the rewriting rules (7.5). This shows that L[r]p is already
in S̃ (thus, in particular, Demodulation does not destroy RS-closedness) and proves
the lemma, because Reflection and Resolution can only produce the empty clause
and no rule applies to the empty clause.

Thus the strategy of applying (in this order)
Restricted Superposition+Demodulation+Reflection+Resolution

always saturates.
To produce an output in optimized format, it is convenient to get it in a DAG-

like form. This can be simulated via explicit acyclic definitions as follows. When
we write Def (e, y) (where e, y are tuples of distinct variables), we mean any flat
formula of the kind (let e := e1 . . . , en)

∧n
i=1 ei = ti, where in the term ti only the

variables e1, . . . , ei−1, y can occur. We shall supply the output in the form

∃e′ (Def (e′, y) ∧ ψ(e′, y)) (7.6)

where the e′ is a subset of the e and ψ is quantifier-free. The DAG-format (7.6) is
not quantifier-free but can be converted to a quantifier-free formula by unravelling
the acyclic definitions of the e′.

Thus our procedure for computing a cover in DAG-format of a primitive formula
∃e φ(e, y) (in case the function symbols of the signature Σ are all unary) runs by
performing the following steps, one after the other. Let OUT be a quantifier-free
formula (initially OUT is >).
(1) We preprocess φ in order to produce a RS-closed set S of empty-constrained

e-flat literals.
8In addition, if we happen to have, say, two different explicit definitions of ei1 as ei1 = t1, ei1 = t′1,

we decide to use just one of them (and always the same one, until the other one is eventually
removed by Demodulation).
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(2) We mark the variables e in the following way (initially, all variables are
unmarked): we scan S and, as soon as we find an equality of the kind ei = t

where all variables from e occurring in t are marked, we mark ei. This loop is
repeated until no more variable gets marked.

(3) If Reflection is applicable, we output ⊥ and exit.
(4) We conjoin OUT with all literals where, besides the y, only marked variables

occur.
(5) For every literal R(t1, . . . , e, . . . , tm) that contains at least an unmarked e, we

scan S until a literal of the type ¬R(t1, . . . , e, . . . , tm) is found: then, we try
to apply Resolution and if we succeed getting ⊥‖{u1 = u′1, . . . , um = u′m}, we
conjoin ∨j uj 6= u′j to OUT .

(6) We prefix to OUT a string of existential quantifiers binding all marked variables
and output the result.

One remark is in order: when running the subprocedures E(si, ti) required by the
Resolution Rule in (5) above, all marked variables must be considered as part of
the y (thus, e.g. R(e, t),¬R(e, v) produces ⊥‖{t = u} if both t and u contain,
besides the y, only marked variables).

Proposition 7.4.2. Let T be the theory EUF in a signature with unary functions
and m-ary relation symbols. Consider a primitive formula ∃e φ(e, y); then, the
above algorithm returns a T -cover of ∃e φ(e, y) in DAG-format in time O(n2), where
n is the size of ∃e φ(e, y).

Proof. The preprocessing step (1) requires an abstraction phase for producing e-flat
literals and a second phase in order to get a RS-closed set: the first phase requires
linear time, whereas the second one requires O(n · log(n)) time (via congruence
closure). All the remaining steps require linear time, except steps (2) and (5) that
requires quadratic time. This is the dominating cost, thus the entire procedure
requires O(n2) time.

Although we do not deeply investigate the problem here, we conjecture that it
might be possible to further lower down the above complexity to O(n · log(n)).

7.5 An Extension of the Constrained Superposi-
tion Calculus

We consider an extension of our Constrained Superposition Calculus SuperCover that
is useful for our applications to verification of data-aware processes. Let us assume
that we have a theory whose axioms are (3.1), namely, for every function symbol f :

∀x (x = undef ↔ f(x) = undef) .

One direction of the above equivalence is equivalent to the ground literal
f(undef) = undef and as such it does not interfere with the completion process
(we just add it to our constraints from the very beginning).
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To handle the other direction, we need to modify our Calculus. First, we add to
the Constrained Superposition Calculus of Section 7.3 the following extra Rule

(4) We conjoin OUT with all literals where, besides the y, only marked variables
occur.

(5) For every literal R(t1, . . . , e, . . . , tm) that contains at least an unmarked e, we
scan S until a literal of the type ¬R(t1, . . . , e, . . . , tm) is found: then, we try
to apply Resolution and if we succeed getting ?k{u1 = u0

1, . . . , um = u0
m},

we conjoin
W

j uj 6= u0
j to OUT .

(6) We prefix to OUT a string of existential quantifiers binding all marked vari-
ables and output the result.

One remark is in order: when running the subprocedures E(si, ti) required by the
Resolution Rule in (5) above, all marked variables must be considered as part of
the y (thus, e.g. R(e, t), ¬R(e, v) produces ?k{t = u} if both t and u contain,
besides the y, only marked variables).

Proposition 6.2. Let T be the theory EUF in a signature with unary functions
and m-ary relation symbols. Consider a primitive formula 9e �(e, y); then, the

above algorithm returns a T -cover of 9e �(e, y) in DAG-format in time O(n2),
where n is the size of 9e �(e, y). /

Proof. The preprocessing step (1) requires an abstraction phase for producing e-
flat literals and a second phase in order to get a RS-closed set: the first phase
requires linear time, whereas the second one requires O(n · log(n)) time (via con-
gruence closure). All the remaining steps require linear time, except steps (2) and
(5) that requires quadratic time. This is the dominating cost, thus the entire pro-
cedure requires O(n2) time. a

Although we do not deeply investigate the problem here, we conjecture that it
might be possible to further lower down the above complexity to O(n · log(n)).

7 An extension of the Constrained Superposition Calculus

We consider an extension of our Constrained Superposition Calculus which is
useful for our applications to verification of data-aware processes. Let us assume
that we have a theory whose axioms are (3), namely, for every function symbol f :

8x (x = undef $ f(x) = undef) .

One direction of the above equivalence is equivalent to the ground literal
f(undef) = undef and as such it does not interfere with the completion process
(we just add it to our constraints from the very beginning).

To handle the other direction, we need to modify our Calculus. First, we add
to the Constrained Superposition Calculus of Section 5 the following extra Rule

Inference Rule Ext(undef)
(Constrained)

f(ej) = u(y) kD

ej = undef kD [ {u(y) = undef}
The Rule is sound because u(y) = undef ^f(ej) = u(y) ! ej = undef follows from
the axioms (3). For cover computation with our new axioms, we need a restricted
version of Paramodulation Rule:

Paramodulation
(Constrained)

ej = r kC L kD

L[r]p kC [ D
(if ej > r & L|p ⌘ ej)
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The Rule is sound because u(y) = undef ∧ f(ej) = u(y) → ej = undef follows
from the axioms (3.1). For cover computation with our new axioms, we need a
restricted version of Paramodulation Rule:

(4) We conjoin OUT with all literals where, besides the y, only marked variables
occur.

(5) For every literal R(t1, . . . , e, . . . , tm) that contains at least an unmarked e, we
scan S until a literal of the type ¬R(t1, . . . , e, . . . , tm) is found: then, we try
to apply Resolution and if we succeed getting ?k{u1 = u0

1, . . . , um = u0
m},

we conjoin
W

j uj 6= u0
j to OUT .

(6) We prefix to OUT a string of existential quantifiers binding all marked vari-
ables and output the result.

One remark is in order: when running the subprocedures E(si, ti) required by the
Resolution Rule in (5) above, all marked variables must be considered as part of
the y (thus, e.g. R(e, t), ¬R(e, v) produces ?k{t = u} if both t and u contain,
besides the y, only marked variables).

Proposition 6.2. Let T be the theory EUF in a signature with unary functions
and m-ary relation symbols. Consider a primitive formula 9e �(e, y); then, the

above algorithm returns a T -cover of 9e �(e, y) in DAG-format in time O(n2),
where n is the size of 9e �(e, y). /

Proof. The preprocessing step (1) requires an abstraction phase for producing e-
flat literals and a second phase in order to get a RS-closed set: the first phase
requires linear time, whereas the second one requires O(n · log(n)) time (via con-
gruence closure). All the remaining steps require linear time, except steps (2) and
(5) that requires quadratic time. This is the dominating cost, thus the entire pro-
cedure requires O(n2) time. a

Although we do not deeply investigate the problem here, we conjecture that it
might be possible to further lower down the above complexity to O(n · log(n)).

7 An extension of the Constrained Superposition Calculus

We consider an extension of our Constrained Superposition Calculus which is
useful for our applications to verification of data-aware processes. Let us assume
that we have a theory whose axioms are (3), namely, for every function symbol f :

8x (x = undef $ f(x) = undef) .

One direction of the above equivalence is equivalent to the ground literal
f(undef) = undef and as such it does not interfere with the completion process
(we just add it to our constraints from the very beginning).

To handle the other direction, we need to modify our Calculus. First, we add
to the Constrained Superposition Calculus of Section 5 the following extra Rule

Inference Rule Ext(undef)
(Constrained)

f(ej) = u(y) kD

ej = undef kD [ {u(y) = undef}
The Rule is sound because u(y) = undef^f(ej) = u(y) ! ej = undef follows from
the axioms (3). For cover computation with our new axioms, we need a restricted
version of Paramodulation Rule:

Paramodulation
(Constrained)

ej = r kC L kD

L[r]p kC [ D
(if ej > r & L|p ⌘ ej)
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Notice that we can have ej > r only in case r is either some existential variable ei
or it is an e-free term u(y). Paramodulation Rule (if it is not a Superposition) can
only apply to a right member of an equality and such a right member must be ej
itself (because our literals are flat). Thus the rule cannot introduce new terms and
consequently it does not compromize the termination argument of Proposition 7.3.5.

Theorem 7.5.1. Let T be the theory ⋃f∈Σ{∀x (x = undef ↔ f(x) = undef)}.
Suppose that the algorithm from Section 7.3, taking as input the primitive e-flat
formula ∃e φ(e, y), gives as output the quantifier-free formula ψ(y). Then the latter
is a T -cover of ∃e φ(e, y).

Proof. The proof of Theorem 7.3.6 can be easily adjusted as follows. We proceed
as in the proof of Theorem 7.3.6, so as to obtain the set ∆(M) ∪ R ∪ S̃ which is
saturated in the standard (unconstrained) Superposition Calculus. Below, we refer
to the general refutational completeness proof of the Superposition Calculus given
in [NR01]. Since we only have unit literals here, in order to produce a model of
∆(M) ∪ R ∪ S̃, we can just consider the convergent ground rewriting system →
consisting of the oriented equalities in ∆+(M)∪R∪ S̃: the support of such model is
formed by the →-normal forms of our ground terms with the obvious interpretation
for the function and constant symbols. For simplicity, we assume that undef is in
normal form. 9 We need to check that whenever we have10 f(t)→∗ undef then we
have also t→∗ undef: we prove this by induction on the reduction ordering for our
ground terms. Let t be a term such that f(t)→∗ undef: if t is e-free then the claim
is trivial (because the axioms (3.1) are supposed to hold inM). Suppose also that
induction hypothesis applies to all terms smaller than t. If t is not in normal form,
then let t̃ be its normal form; then we have f(t) →+ f(t̃) →∗ undef, by the fact
that → is convergent. By induction hypothesis, t̃→ undef, hence t→+ t̃→∗ undef,
as desired. Finally, let us consider the case in which t is in normal form; since

9To be pedantic, according to the definition of ∆+(M), there should be an equality undef = c0
in ∆+(M) so that c0 is the normal form of undef.

10We use →∗ for the reflexive-transitive closure of → and →+ for the transitive closure of →.
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f(t) is reducible in root position by some rule l → r, our rules l → r are e-flat
and t is not e-free, we have that t ≡ ej for some existential variable ej. Then, we
must have that S contains an equality of the kind f(ej) = u(y) ‖D or of the kind
f(ej) = ei ‖D (the constraint D being true inM under the given assignment to the
y). The latter case is reduced to the former, since ei →∗ undef (by the convergence
of →∗) and since S is closed under Paramodulation. In the former case, by the rule
Ext(undef), we must have that S contains ej = undef ‖D ∪ {u(y) = undef}. Now,
since f(ej) = u(y) ‖D belongs to S and D is true inM, we have that the normal
forms of f(ej) and of u(y) are the same; since the normal form of f(ej) is undef,
the normal form of u(y) is undef too, which means that u(y) = undef is true inM.
But ej = undef ‖D ∪ {u(y) = undef} belongs to S, hence ej = undef belongs to S̃,
which implies ej →∗ undef, as desired.

7.6 Remarks on MCMT Implementation

As evident from Subsection 7.2.1, our main motivation for investigating covers
originated from the verification of DAPs (Data-Aware Processes). Such applications
require database (DB) signatures to contain only unary function symbols (besides
relations of every arity). We observed that computing covers of primitive formulae
in such signatures requires only polynomial time. In addition, if relation symbols
are at most binary, the cover of a primitive formula is a conjunction of literals (this
is due to the fact that the constrained literals produced during saturation either
have empty constraints or are of the kind ⊥‖ t1 = t2): this is crucial in applications,
because model checkers like mcmt [GR10b] and cubicle [Con+12] represent sets
of reachable states as primitive formulae, i.e., existentially quantified ‘cubes’ (which
means conjunctions of literals). Indeed, these model checkers do not need any DNF
conversion (which would cause an exponential blow-up) after computing covers in
the above-mentioned restricted case: in contrast, a DNF conversion would have
been needed if the output of the cover algorithm had been a generic formula. This
makes cover computations a quite attractive technique in DAP verification.

Our cover algorithm for DB signatures has been implemented in the model
checker mcmt. The implementation is however still partial, nevertheless the tool is
able to compute covers for the EUF -fragment with unary function symbols, unary
relations and binary relations. The optimized procedure of Section 7.4 has not
yet been implemented, instead mcmt uses a customary Knuth-Bendix completion
(in fact, for the above mentioned fragments the constraints are always trivial and
our constrained Superposition Calculus essentially boils down to Knuth-Bendix
completion for ground literals in EUF).

Axioms (3.1) are also covered in the following way. We assume that constraints of
which we want to compute the cover always contain either the literal ej = undef or the
literal ej 6= undef for every existential variable ej. Whenever a constraint contains
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the literal ej 6= undef, the completion procedure adds the literal u(yi) 6= undef
whenever it had produced a literal of the kind f(ej) = u(yi).11

We wonder whether we are justified in assuming that all constraints of which we
want to compute the cover always contain either the literal ej = undef or the literal
ej 6= undef for every existential variable ej. The answer is affirmative: according
to the backward search algorithm implemented in array-based systems tools, the
variable ej to be eliminated always comes from the guard of a transition and we can
assume that such a guard contains the literal ej 6= undef (if we need a transition
with ej = undef - for an existentially quantified variable ej - it is possible to
write trivially this condition without using a quantified variable). The mcmt User
Manual (available from the distribution) contains precise instructions on how to
write specifications following the above prescriptions: for the sake of completeness,
we will report a summary of the User Manual in Chapter 9.

A first experimental evaluation (based on the existing benchmark provided
in [LDV17]) will be described in Chapter 9, where we will extensively use the
implemented cover algorithms when backward search needs to eliminate quantified
data variables (see Chapter 4 for details on this). The first experiments are very
encouraging: mcmt is able to solve in few seconds almost all the examples from
the benchmark and the cover computations generated automatically during the
model-checking search were discharged instantaneously.

11This is sound because e 6= undef implies f(e) 6= undef according to (3.1), so u(yi) 6= undef
follows from f(ej) = u(yi) and e 6= undef.
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In this chapter, we attack the problem of computing covers in theory combi-
nations. Theory combination is an important topic in automated reasoning: it
deals with the problem of transferring properties and methods to the union (i.e.,
the combination) of theories, so as to modularly exploit the properties and the
methods of the component theories. The possibility of the transfer to combination
is usually one of the desiderata of every automated reasoning methodology, because
it avoids developing ad hoc techniques for every theory that can be seen as a
combination of theories for which these techniques already exist. Indeed, it allows
to operationally exploit the techniques working for the component theories in a
modular way (i.e., using these techniques as black boxes) and to lift them to a more
general machinery that works for the combination. The goal of this chapter is to
develop a combined cover algorithm that computes covers for the combination of
two theories by employing the cover algorithms of the component theories.
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Computing combined covers is particularly interesting in view of DAP verification.
In fact, we showed in the previous chapter how to (efficiently) compute covers for
minimal (but still sufficiently expressive) DB schemas (e.g., EUF). We would like to
investigate a general method that works for combination of DB schemas for which
cover (or quantifier elimination) algorithms exist: in this way, whenever we get such
algorithms for the component theories, we can easily combine them so as to get a
combined cover algorithm for the combined DB schema. This would be especially
useful for DB extended-schemas (cf. Section 3.1.1): in fact, if T ′ is a theory admitting
covers, or, even better, quantifier elimination like linear real arithmetic (LRA), we
would immediately get a combined cover algorithm that would allow us to verify
U-RASs containing, e.g., arithmetic guards. Fortunately, in case of combinations of
DB schemas (like EUF) admitting model completion and arithmetic theories like
LRA, it is possible to develop such a combined cover algorithm: we will prove in
Section 8.5 that this is possible in the general case of what we call tame combinations
(cf. Section 2). However, given generic first-order theories admitting covers, their
combination does not necessarily admit covers: we show a counterexample in
Section 8.4, in the case one of the component theories is not convex.

In this chapter, we study the problem of combined covers from a general
perspective: in Section 8.3 we prove that, for generic first-order theories that are
convex and have disjoint signatures, cover algorithms can be transferred to theory
combinations under the same hypothesis needed to transfer quantifier-free interpo-
lation (i.e., the equality interpolating property). We do so by exhibiting a concrete
combined algorithm (called ConvexCombCover) that modularly exploits the cover
algorithms for the component theories. The key feature of this algorithm relies on the
extensive usage of the Beth definability property (defined in Section 6). As shown
in Subsection 8.3.1, the hypotheses devised for the combined algorithm are minimal,
in the sense that they are necessary for obtaining combined covers of minimal (and
extremely important in practice) theory combinations. ConvexCombCover can be,
e.g., used to compute covers of a mono-sorted combined value theory T ′ (from a
suitable DB extended-schema 〈Σ ∪ Σ′, T ∪ T ′〉, cf. Subsection 3.1.1) satisfying the
requirements for combination from Section 8.3: an example of such a T ′ is the
theory LRA ∪ EUF combining linear real arithmetic with uninterpreted symbols.

Finally, in Section 8.5, we conclude the chapter by giving a combined cover
algorithm (called TameCombCover) for possibly non-convex theories, in case the
combination is ‘tame’. TameCombCover can be successfully applied, e.g., to DB
extended-schemas that are the tame combination of a DB schema and of a suitable
(possibly combined) value theory T ′, such as linear integer arithmetic LIA or the
theory LRA ∪ EUF combining linear real arithmetic with uninterpreted symbols.
We will see a concrete example of such a DB extended-theory in Example 8.5.15.
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8.1 Interpolation, Equality Interpolating Condi-
tion and Beth Definability

We report here some definitions and results we need concerning combined quantifier-
free interpolation. Some of them are also in the preliminaries of this part of
the thesis (Chapter 6), but we recall them here since they will be extensively
used in the course of the current chapter. Most definitions and result are proved
in [BGR14]: however, they are simplified here because we restrict them to the
case of universal convex theories.

As defined in Chapter 6, theory T is stably infinite iff every T -satisfiable
constraint is satisfiable in an infinite model of T . The following lemma comes
from a compactness argument:

Lemma 8.1.1. If T is stably infinite, then every finite or countable modelM of T
can be embedded in a model N of T such that |N | \ |M| is countable.

Proof. Consider T ∪ ∆(M) ∪ {ci 6= a | a ∈ |M|}i ∪ {ci 6= cj}i 6=j, where {ci}i is
a countable set of fresh constants: by the Diagram Lemma and the downward
Löwenheim-Skolem theorem [CK90], it is sufficient to show that this set is consistent.
Suppose not; then by compactness T ∪∆0 ∪∆1 ∪∆2 is not satisfiable, for a finite
subset ∆0 of ∆(M), a finite subset ∆1 of {ci 6= a | a ∈ |M|}i and a finite subset
∆2 of ∪{ci 6= cj}i 6=j. However, this is a contradiction because by stable infiniteness
∆0 (being satisfiable inM) is satisfiable in an infinite model of T .

We recall that a theory T is convex iff for every constraint δ, if T ` δ →∨n
i=1 xi = yi then T ` δ → xi = yi holds for some i ∈ {1, ..., n}. We also recall

that a convex universal theory T is equality interpolating iff for every pair y1, y2 of
variables and for every pair of constraints δ1(x, z1, y1), δ2(x, z2, y2) such that

T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = y2 (8.1)

there exists a term t(x) such that

T ` δ1(x, z1, y1) ∧ δ2(x, z2, y2)→ y1 = t(x) ∧ y2 = t(x). (8.2)

Next two results (supplied without proof) will be used only in Subsection 8.3.1
to show that, in some sense, the sufficient conditions of our main combination
Theorem 7.3.6 are also necessary.

Theorem 8.1.2. [YM05; BGR14] Let T1 and T2 be two universal, convex, stably
infinite theories over disjoint signatures Σ1 and Σ2. If both T1 and T2 are equality
interpolating and have the quantifier-free interpolation property, then so does
T1 ∪ T2.

There is a converse of the previous result; for a signature Σ, let us call EUF(Σ)
the pure equality theory over the signature Σ (this theory is equality interpolating
and has the quantifier-free interpolation property).
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Theorem 8.1.3. [BGR14] Let T be a stably infinite, universal, convex theory
admitting quantifier-free interpolation and let Σ be a signature disjoint from the
signature of T containing at least a unary predicate symbol. Then, T ∪ EUF(Σ)
has quantifier-free interpolation iff T is equality interpolating.

In [BGR14] the above definitions and results are extended to the non-convex case
and a long list of universal quantifier-free interpolating and equality interpolating
theories is given. The list includes EUF(Σ), recursive data theories, as well as linear
arithmetics. For linear arithmetics (and fragments thereof), it is essential to make
a very careful choice of the signature, see again [BGR14] (especially Subsection 4.1)
for details. All the above theories admit a model completion (which coincides with
the theory itself in case the theory admits quantifier elimination).

The equality interpolating property in a theory T can be equivalently character-
ized using Beth definability. We first recall the notion of Beth definability (from
Chapter 6). Consider a primitive formula ∃zφ(x, z, y); we say that ∃z φ(x, z, y)
implicitly defines y in T iff the formula ∀y ∀y′ (∃zφ(x, z, y)∧ ∃zφ(x, z, y′)→ y = y′)
is T -valid. We say that ∃zφ(x, z, y) explicitly defines y in T iff there is a term t(x)
such that the formula ∀y (∃zφ(x, z, y)→ y = t(x)) is T -valid. A theory T has the
Beth definability property for primitive formulae iff whenever a primitive formula
∃z φ(x, z, y) implicitly defines the variable y then it also explicitly defines it.

Theorem 6.2.2[BGR14] A convex theory T having quantifier-free interpolation is
equality interpolating iff it has the Beth definability property for primitive formulae.

In the following, we need only the left-to-right implication of the previous
theorem, which is proved in Chapter 6.

8.2 Convex Theories
We now collect some useful facts concerning convex theories. We fix for this section
a convex, stably infinite, equality interpolating universal theory T admitting a model
completion T ∗. We let Σ be the signature of T .

We fix also a Σ-constraint φ(x, y), where we assume that y = y1, . . . , yn (recall
that the tuple x is disjoint from the tuple y according to our conventions from
Section 6).

For i = 1, . . . , n, we let the formula ImplDefTφ,yi
(x) be the quantifier-free formula

equivalent in T ∗ to the formula

∀y ∀y′(φ(x, y) ∧ φ(x, y′)→ yi = y′i) (8.3)

where the y′ are renamed copies of the y. Notice that the variables occurring free
in φ are x, y, whereas only the x occur free in ImplDefTφ,yi

(x) (the variable yi is
among the y and does not occur free in ImplDefTφ,yi

(x)): these facts coming from
our notational conventions are crucial and should be kept in mind when reading
this and next section. We need a first semantic technical lemma.
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Lemma 8.2.1. Suppose that we are given a modelM of T and elements a from
the support ofM such thatM 6|= ImplDefTφ,yi

(a) for all i = 1, . . . , n. Then there
exists an extension N ofM such that for some b ∈ |N | \ |M| we have N |= φ(a, b).

Proof. Since T has a model completion, it has uniform quantifier-free interpolants by
Theorem 7.1.2, hence it has also (ordinary) quantifier-free interpolants. By
Theorem 6.2.1 it is strongly amalgamable because it is equality interpolating.
In conclusion, we are allowed to use strong amalgamation in our proof. By strong
amalgamability, we can freely assume thatM is generated, as a Σ-structure, by
the a: in fact, if we prove the statement for the substructure generated by the a,
then strong amalgamability will provide the model we want.

By using the Robinson Diagram Lemma, what we need is to prove the consistency
of T ∪∆(M) with the set of ground sentences

{φ(a, b)} ∪ {bi 6= t(a)}t,bi

where t(x) varies over Σ(x)-terms, the b = b1, . . . , bn are fresh constants and i vary
over 1, . . . , n. By convexity,1 this set is inconsistent iff there exist a term t(x) and
i = 1, . . . , n such that

T ∪∆(M) ` φ(a, y)→ yi = t(a) .

This however implies that T ∪∆(M) has the formula

∀y ∀y′(φ(a, y) ∧ φ(a, y′)→ yi = y′i)

as a logical consequence. If we now embedM into a model N of T ∗, we have that
N |= ImplDefTφ,yi

(a), which is in contrast toM 6|= ImplDefTφ,yi
(a) (becauseM is a

substructure of N and ImplDefTφ,yi
(a) is quantifier-free).

The following lemma supplies terms which will be used as ingredients in our
combined covers algorithm:

Lemma 8.2.2. Let Li1(x) ∨ · · · ∨ Liki
(x) be the disjunctive normal form (DNF) of

ImplDefTφ,yi
(x). Then, for every j = 1, . . . , ki, there is a Σ(x)-term tij(x) such that

T ` Lij(x) ∧ φ(x, y)→ yi = tij . (8.4)

As a consequence, a formula of the kind ImplDefTφ,yi
(x)∧∃y (φ(x, y)∧ψ) is equivalent

(modulo T ) to the formula

ki∨
j=1
∃y (yi = tij ∧ Lij(x) ∧ φ(x, y) ∧ ψ) . (8.5)

1As noticed in Chapter 6, convexity implies that if, for a set of literals φ and for a not
empty disjunction of terms

∨n
i=1 ti = ui, we have T |= φ →

∨n
i=1 ti = ui, then we have also

T |= φ→ ti = ui for some i = 1, . . . , n.



176 8.2. Convex Theories

Proof. We have that (∨j Lij) ↔ ImplDefTφ,yi
(x) is a tautology, hence from the

definition of ImplDefTφ,yi
(x), we have that

T ∗ ` Lij(x)→ ∀y ∀y′(φ(x, y) ∧ φ(x, y′)→ yi = y′i) ;

however this formula is trivially equivalent to a universal formula (Lij does not
depend on y, y′), hence since T and T ∗ prove the same universal formulae, we get

T ` Lij(x) ∧ φ(x, y) ∧ φ(x, y′)→ yi = y′i .

Using Beth definability property (Theorem 6.2.2), we get (8.4), as required, for
some terms tij(x). Finally, the second claim of the lemma follows from (8.4) by
trivial logical manipulations.

In all our concrete examples, the theory T has its quantifier-free fragment
decidable (namely it is decidable whether a quantifier-free formula is a logical
consequence of T or not), thus the terms tij mentioned in Lemma 8.2.2 can be
computed just by enumerating all possible Σ(x)-terms: the computation terminates,
because the above proof shows that the appropriate terms always exist. However, this
is terribly inefficient and, from a practical point of view, one needs to have at disposal
dedicated algorithms to find the required equality interpolating terms. For some
common theories (EUF , Lisp-structures, linear real arithmetic), such algorithms
are designed in [YM05]; in [BGR14] [Lemma 4.3 and Theorem 4.4], the algorithms
for computing equality interpolating terms are connected to quantifier elimination
algorithms in the case of universal theories admitting quantifier elimination.

The following lemma will be useful in the next section:

Lemma 8.2.3. Let T have a model completion T ∗ and let the constraint φ(x, y)
be of the kind α(x) ∧ φ′(x, y), where y = y1, . . . , yn. Then for every i = 1, . . . , n,
the formula ImplDefTφ,yi

(x) is T -equivalent to α(x)→ ImplDefTφ′,yi
(x).

Proof. According to (8.3), the formula ImplDefTφ,yi
(x) is obtained by eliminating

quantifiers in T ∗ from

∀y ∀y′(α(x) ∧ φ′(x, y) ∧ α(x) ∧ φ′(x, y′)→ yi = y′i) (8.6)

The latter is equivalent, modulo logical manipulations, to

α(x)→ ∀y ∀y′(φ′(x, y) ∧ φ′(x, y′)→ yi = y′i) (8.7)

hence the claim (eliminating quantifiers in T ∗ from (8.6) and (8.7) gives quantifier-
free T ∗-equivalent formulae, hence also T -equivalent formulae because T and T ∗
prove the same quantifier-free formulae).
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8.3 The Convex Combined Cover Algorithm
Let us now fix two theories T1, T2 over disjoint signatures Σ1,Σ2. We assume that
both of them satisfy the assumptions from the previous section, meaning that
they are convex, stably infinite, equality interpolating, universal and admit model
completions T ∗1 , T ∗2 respectively. We will prove in this section (Theorem 8.3.3)
that T1 ∪ T2 admits a model completion too. We achieve this by supplying a
combined algorithm, called ConvexCombCover, for computing T1 ∪ T2-covers: in
order to construct the T1 ∪ T2-cover, this combined algorithm exploits the cover
algorithms of the component theories Ti (i = 1, 2).

We need to compute a cover for ∃e φ(x, e), where φ is a conjunction of Σ1 ∪ Σ2-
literals. By applying rewriting purification steps like

φ =⇒ ∃d (d = t ∧ φ(d/t))

(where d is a fresh variable and t is a pure term, i.e. it is either a Σ1- or a Σ2-term),
we can assume that our formula φ is of the kind φ1 ∧ φ2, where φ1 is a Σ1-formula
and φ2 is a Σ2-formula. Thus we need to compute a cover for a formula of the kind

∃e (φ1(x, e) ∧ φ2(x, e)), (8.8)

where φi is a conjunction of Σi-literals (i = 1, 2). We also assume that both φ1
and φ2 contain the literals ei 6= ej (for i 6= j) as a conjunct: this can be achieved
by guessing a partition of the e and by replacing each ei with the representative
element of its equivalence class.

Remark 8.3.1. It is not clear whether this preliminary guessing step can be avoided.
In fact, Nelson-Oppen [NO79] combined satisfiability for convex theories does not
need it; however, combining covers algorithms is a more complicated problem than
combining mere satisfiability algorithms and for technical reasons related to the
correctness and completeness proofs below, we were forced to introduce guessing at
this step.

To manipulate formulae, our algorithm employs acyclic explicit definitions as
follows. When we write ExplDef(z, x) (where z, x are tuples of distinct variables),
we mean any formula of the kind (let z := z1 . . . , zm)

m∧
i=1

zi = ti(z1, . . . , zi−1, x)

where the term ti is pure (i.e. it is a Σi-term) and only the variables z1, . . . , zi−1, x

can occur in it. When we assert a formula like ∃z (ExplDef(z, x) ∧ ψ(z, x)),
we are in fact in the condition of recursively eliminating the variables z from
it via terms containing only the parameters x (the ’explicit definitions’ zi = ti
are in fact arranged acyclically).
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A working formula is a formula of the kind

∃z (ExplDef(z, x) ∧ ∃e (ψ1(x, z, e) ∧ ψ2(x, z, e))) , (8.9)

where ψ1 is a conjunction of Σ1-literals and ψ2 is a conjunction of Σ2-literals. The
variables x are called parameters, the variables z are called defined variables and
the variables e (truly) existential variables. The parameters do not change during
the execution of the algorithm. We assume that ψ1, ψ2 in a working formula (8.9)
always contain the literals ei 6= ej (for distinct ei, ej from e) as a conjunct.

In our starting formula (8.8), there are no defined variables. However, if via some
syntactic check it happens that some of the existential variables can be recognized
as defined, then it is useful to display them as such (this observation may avoid
redundant cases - leading to inconsistent disjuncts - in the computations below).

A working formula like (8.9) is said to be terminal iff for every existential
variable ei ∈ e we have that

T1 ` ψ1 → ¬ImplDefT1
ψ1,ei

(x, z) and T2 ` ψ2 → ¬ImplDefT2
ψ2,ei

(x, z) . (8.10)

Roughly speaking, we can say that in a terminal working formula, all variables which
are not parameters are either explicitly definable or recognized as not implicitly
definable by both theories; of course, a working formula with no existential variables
is terminal.

Lemma 8.3.1. Every working formula is equivalent (modulo T1∪T2) to a disjunction
of terminal working formulae.

Proof. To compute the required terminal working formulae, it is sufficient to apply
the following non-deterministic procedure (the output is the disjunction of all
possible outcomes). The non-deterministic procedure applies one of the following
alternatives.

(1) Update ψ1 by adding to it a disjunct from the DNF of ∧ei∈e ¬ImplDefT1
ψ1,ei

(x, z)
and ψ2 by adding to it a disjunct from the DNF of ∧ei∈e ¬ImplDefT2

ψ2,ei
(x, z);

(2.i) Select ei ∈ e and h ∈ {1, 2}; then update ψh by adding to it a disjunct Lij
from the DNF of ImplDefTh

ψh,ei
(x, z); the equality ei = tij (where tij is the

term mentioned in Lemma 8.2.2)2 is added to ExplDef(z, x); the variable ei
becomes in this way part of the defined variables.

If alternative (1) is chosen, the procedure stops, otherwise it is recursively applied
again and again: we have one truly existential variable less after applying alternative
(2.i), so the procedure terminates, since eventually either no truly existential variable

2Lemma 8.2.2 is used taking as y the tuple e, as x the tuple x, z, as φ(x, y) the formula
ψh(x, z, e) and as ψ the formula ψ3−h.
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remains or alternative (1) is applied. The correctness of the procedure is due to the
fact that the following formula is trivially a tautology:(∧

ei∈e ¬ImplDefT1
ψ1,ei

(x, z) ∧ ∧ei∈e ¬ImplDefT2
ψ2,ei

(x, z)
)
∨

∨ ∨
ei∈e ImplDefT1

ψ1,ei
(x, z) ∨ ∨ei∈e ImplDefT2

ψ2,ei
(x, z)

The first disjunct is used in alternative (1), the other disjuncts in alternative (2.i).
At the end of the procedure, we get a terminal working formula. Indeed, if no
truly existential variable remains, then the working formula is trivially terminal.
It remains to prove that the working formula obtained after applying alternative
(1) is indeed terminal. Let ψ′k (for k = 1, 2) be the formula obtained from ψk
after applying alternative (1). We have that ψ′k is α(x, z) ∧ ψk(x, z, e), where
α is a disjunct of the DNF of ∧ei∈e ¬ImplDefTk

ψk,ei
(x, z). We need to show that

Tk ` ψ′k → ¬ImplDefTk

ψ′
k
,ej

(x, z) for every j. Fix such a j; according to Lemma 8.2.3,
we must show that

Tk ` α(x, z) ∧ ψk(x, z, e)→ ¬(α(x, z)→ ImplDefTk
ψk,ej

(x, z))

which is indeed the case because α(x, z) logically implies ¬ImplDefTk

ψ′
k
,ej

(x, z), since
α(x, z) is a disjunct of the DNF of ∧ei∈e ¬ImplDefTk

ψk,ei
(x, z).

Thus we are left to the problem of computing a cover of a terminal working
formula; this problem is solved in the following proposition:

Proposition 8.3.2. A cover of a terminal working formula (8.9) can be obtained
just by unravelling the explicit definitions of the variables z from the formula

∃z (ExplDef(z, x) ∧ θ1(x, z) ∧ θ2(x, z)) (8.11)

where θ1(x, z) is the T1-cover of ∃eψ1(x, z, e) and θ2(x, z) is the T2-cover of
∃eψ2(x, z, e).

Proof. In order to show that Formula (8.11) is the T1∪T2-cover of a terminal working
formula (8.9), we apply Lemma 7.1.1. The first condition of that lemma is easily
fulfilled. Concerning the second condition, we prove that, for every T1∪T2-modelM,
for every tuple a, c from |M| such thatM |= θ1(a, c)∧ θ2(a, c) there is an extension
N ofM such that N is still a model of T1 ∪T2 and N |= ∃e(ψ1(a, c, e)∧ψ2(a, c, e)).
By a Löwenheim-Skolem argument, since our languages are countable, we can
suppose thatM is at most countable and actually that it is countable by stable
infiniteness of our theories, see Lemma 8.1.1 (the fact that T1 ∪ T2 is stably infinite
in case both T1, T2 are such, comes from the proof of Nelson-Oppen combination
result, see [NO79],[TH96], [Ghi04]).

According to the conditions (8.10) and the definition of a cover (notice that the
formulae ¬ImplDefTh

ψh,ei
(x, z) do not contain the e and are quantifier-free) we have

that

T1 ` θ1 → ¬ImplDefT1
ψ1,ei

(x, z) and T2 ` θ2 → ¬ImplDefT2
ψ2,ei

(x, z)
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(for every ei ∈ e). Thus, sinceM 6|= ImplDefT1
ψ1,ei

(a, c) andM 6|= ImplDefT2
ψ2,ei

(a, c)
hold for every ei ∈ e, we can apply Lemma 8.2.1 and conclude that there exist a
T1-model N1 and a T2-model N2 such that N1 |= ψ1(a, c, b1) and N2 |= ψ2(a, c, b2)
for tuples b1 ∈ |N1| and b2 ∈ |N2|, both disjoint from |M|. By a Löwenheim-Skolem
argument, we can suppose that N1,N2 are countable and by Lemma 8.1.1 even that
they are both countable extensions ofM.

The tuples b1 and b2 have equal length because the ψ1, ψ2 from our working
formulae entail ei 6= ej, where ei, ej are different existential variables. Thus there is
a bijection ι : |N1| → |N2| fixing all elements inM and mapping component-wise
the b1 onto the b2. But this means that, exactly as it happens in the proof of the
completeness of the Nelson-Oppen combination procedure, the Σ2-structure on N2
can be moved back via ι−1 to |N1| in such a way that the Σ2-substructure fromM
is fixed and in such a way that the tuple b2 is mapped to the tuple b1. In this way,
N1 becomes a Σ1 ∪Σ2-structure which is a model of T1 ∪ T2 and which is such that
N1 |= ψ1(a, c, b1) ∧ ψ2(a, c, b1), as required.

From Lemma 8.3.1, Proposition 8.3.2 and Theorem 7.1.2, we immediately get

Theorem 8.3.3. Let T1, T2 be convex, stably infinite, equality interpolating,
universal theories over disjoint signatures admitting a model completion. Then
T1∪T2 admits a model completion too. Covers in T1∪T2 can be effectively computed
as shown above.

We recall from Theorem 8.1.2 that the equality interpolating property transfers
to combination of theories too, when it holds in the component theories.

We now summarize the steps of the combined cover algorithm ConvexCombCover
that takes as input the primitive formula ∃e φ(x, e), where φ is a conjunction
of Σ1 ∪ Σ2-literals:
1: Apply rewriting purification steps, like φ =⇒ ∃d (d = t ∧ φ(d/t)) (where d is a

fresh variable and t is a pure term), until φ = φ1 ∧ φ2, where φi is a Σi-formula
(i = 1, 2).

2: Guess a partition of the e and replace each ek with the representative element
of its equivalence class.

3: Apply the non-deterministic procedure of Lemma 8.3.1 to φ so as to get a
disjunction of terminal working formulae TWj, where each disjunct TWj is
∃z (ExplDefj(z, x) ∧ ∃e (ψj,1(x, z, e) ∧ ψj,2(x, z, e)))

4: For every disjunct TWj, compute the T1-cover of ∃eψj,1(x, z, e), say θj,1(x, z),
and the T2-cover of ∃eψj,2(x, z, e), say θj,2(x, z).

5: Return as output the disjunction ∨j ∃z (ExplDefj(z, x) ∧ θj,1(x, z) ∧ θj,2(x, z)).
Notice that the input cover algorithms in the above combined cover computation

algorithm are used not only in the final step described in Proposition 8.3.2, but
also every time we need to compute a formula ImplDefTh

ψh,ei
(x, z): according to its

definition, this formula is obtained by eliminating quantifiers in T ∗i from (8.3) (this
is done via a cover computation, reading ∀ as ¬∃¬). In practice, implicit definability
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is not very frequent, so that in many concrete cases ImplDefTh
ψh,ei

(x, z) is trivially
equivalent to ⊥ (in such cases, Step (2.i) above can obviously be disregarded).

Example 8.3.14

Let T ′ := EUF ∪ LRA, where LRA is linear real arithmetic. Since both EUF
and LRA are convex, stably infinite, equality interpolating, universal theories
over disjoint signatures, EUF admits a model completion (cf. Section 7.3) and
LRA admits quantifier elimination, Theorem 8.3.3 applies and we can apply
ConvexCombCover to compute T ′-covers. This example will be continued in
Section 8.5, where T ′ will be the (combined) value theory of a suitable DB
extended-schema.

8.3.1 The Necessity of the Equality Interpolating Condi-
tion.

The following result shows that equality interpolating is a necessary condition for a
transfer result, in the sense that it is already required for minimal combinations
with signatures adding uninterpreted symbols:

Theorem 8.3.4. Let T be a convex, stably infinite, universal theory admitting
a model completion and let Σ be a signature disjoint from the signature of T
containing at least a unary predicate symbol. Then T ∪ EUF(Σ) admits a model
completion iff T is equality interpolating.

Proof. The necessity can be shown by using the following argument. By The-
orem 7.1.2, T ∪ EUF(Σ) has uniform quantifier-free interpolation, hence also
ordinary quantifier-free interpolation. We can now apply Theorem 8.1.3 and
get that T must be equality interpolating. Conversely, the sufficiency comes
from Theorem 8.3.3 together with the fact that EUF(Σ) is trivially universal,
convex, stably infinite, has a model completion (see Chapter 7) and is equality
interpolating [YM05],[BGR14].

8.3.2 An Example of Cover Computation
We now analyze an example in detail. Our results apply for instance to the case
where T1 is EUF(Σ) and T2 is linear real arithmetic LRA. We recall that covers
are computed in real arithmetic by quantifier elimination (using, e.g., the Fourier-
Motzkin procedure, that we call FM-QE), whereas for EUF(Σ) one can apply the
superposition-based algorithm from Chapter 7. Let us show that the cover of

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3

 (8.12)
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is the following formula

[x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0)] ∨
∨ [x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0] ∨

∨
[
x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2) ∧ f(2x2 + f(x2)) = x1 ∧

∧ f(x1 + f(x1)) = x1 + f(x1)

] (8.13)

Formula (8.12) is already purified. Notice also that the variables e1, e2 are in
fact already explicitly defined (only e3, e4 are truly existential variables).

We first make the partition guessing. There is no need to involve defined
variables into the partition guessing, hence we need to consider only two partitions;
they are described by the following formulae:

P1(e3, e4) ≡ e3 6= e4

P2(e3, e4) ≡ e3 = e4

We first analyze the case of P1. The formulae ψ1 and ψ2 to which we need to
apply exhaustively Step (1) and Step (2.i) of our algorithm are:

ψ1 ≡ f(e3) = e3 ∧ f(e4) = x1 ∧ e3 6= e4

ψ2 ≡ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3 ∧ e3 6= e4

We first compute the implicit definability formulae for the truly existential variables
with respect to both T1 and T2.

- We first consider ImplDefT1
ψ1,e3(x, z). Here we show that the cover of the negation

of formula (8.3) is equivalent to > (so that ImplDefT1
ψ1,e3(x, z) is equivalent to

⊥). We must quantify over truly existential variables and their duplications,
thus we need to compute the cover of

f(e′3) = e′3 ∧ f(e3) = e3 ∧ f(e′4) = x1 ∧ f(e4) = x1 ∧ e3 6= e4 ∧ e′3 6= e′4 ∧ e′3 6= e3

This is a saturated set according to the superposition based procedure
SuperCover from Chapter 7, hence the result is >, as claimed.

- The formula ImplDefT1
ψ1,e4(x, z) is also equivalent to ⊥, by the same argument as

above.

- To compute ImplDefT2
ψ2,e3(x, z) we use Fourier-Motzkin quantifier elimination (FM-

QE). We need to eliminate the variables e3, e
′
3, e4, e

′
4 (intended as existentially

quantified variables) from

x1 + e1 ≤ e′3 ≤ x2 + e2 ∧ x1 + e1 ≤ e3 ≤ x2 + e2 ∧ e′4 = x2 + e′3∧
∧ e4 = x2 + e3 ∧ e3 6= e4 ∧ e′3 6= e′4 ∧ e′3 6= e3 .

This gives x1 + e1 6= x2 + e2 ∧ x2 6= 0, so that ImplDefT2
ψ2,e3(x, z) is x1 + e1 =

x2 + e2 ∧ x2 6= 0. The corresponding equality interpolating term for e3 is
x1 + e1.
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- The formula ImplDefT2
ψ2,e4(x, z) is also equivalent to x1 + e1 = x2 + e2 ∧ x2 6= 0

and the equality interpolating term for e4 is x1 + e1 + x2.

So, if we apply Step 1 we get

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧ e3 6= e4 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ e4 = x2 + e3 ∧ x1 + e1 6= x2 + e2


(8.14)

(notice that the literal x2 6= 0 is entailed by ψ2, so we can simplify it to > in
ImplDefT2

ψ2,e3(x, z) and ImplDefT2
ψ2,e4(x, z)). If we apply Step (2.i) (for i=3), we

get (after removing implied equalities)

∃e1 · · · ∃e4


e1 = f(x1) ∧ e2 = f(x2) ∧ e3 = x1 + e1 ∧
∧ f(e3) = e3 ∧ f(e4) = x1 ∧ e3 6= e4 ∧
∧ e4 = x2 + e3 ∧ x1 + e1 = x2 + e2

 (8.15)

Step (2.i) (for i=4) gives a formula logically equivalent to (8.15). Notice that (8.15)
is terminal too, because all existential variables are now explicitly defined (this is a
lucky side-effect of the fact that e3 has been moved to the defined variables). Thus
the exhaustive application of Steps (1) and (2.i) is concluded.

Applying the final step of Proposition 8.3.2 to (8.15) is quite easy: it is sufficient
to unravel the acyclic definitions. The result, after little simplification, is

x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2)∧
∧ f(x2 + f(x1 + f(x1))) = x1 ∧ f(x1 + f(x1)) = x1 + f(x1);

this can be further simplified to

x2 6= 0 ∧ x1 + f(x1) = x2 + f(x2)∧
∧ f(2x2 + f(x2)) = x1 ∧ f(x1 + f(x1)) = x1 + f(x1);

(8.16)

As to formula (8.14), we need to apply the final cover computations mentioned
in Proposition 8.3.2. The formulae ψ1 and ψ2 are now

ψ′1 ≡ f(e3) = e3 ∧ f(e4) = x1 ∧ e3 6= e4

ψ′2 ≡ x1 + e1 ≤ e3 ≤ x2 + e2 ∧ e4 = x2 + e3 ∧ x1 + e1 6= x2 + e2 ∧ e3 6= e4

The T1-cover of ψ′1 is >. For the T2-cover of ψ′2, eliminating with FM-QE the
variables e4 and e3, we get

x1 + e1 < x2 + e2 ∧ x2 6= 0

which becomes

x1 + f(x1) < x2 + f(x2) ∧ x2 6= 0 (8.17)
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after unravelling the explicit definitions of e1, e2. Thus, the analysis of the case of
the partition P1 gives, as a result, the disjunction of (8.16) and (8.17).

We now analyze the case of P2. Before proceeding, we replace e4 with e3 (since
P2 precisely asserts that these two variables coincide); our formulae ψ1 and ψ2 become

ψ′′1 ≡ f(e3) = e3 ∧ f(e3) = x1

ψ′′2 ≡ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ 0 = x2

From ψ′′1 we deduce e3 = x1, thus we can move e3 to the explicitly defined variables
(this avoids useless calculations: the implicit definability condition for variables
having an entailed explicit definition is obviously >, so making case split on it
produces either tautological consequences or inconsistencies). In this way we get
the terminal working formula

∃e1 · · · ∃e3


e1 = f(x1) ∧ e2 = f(x2) ∧ e3 = x1

∧ f(e3) = e3 ∧ f(e3) = x1 ∧
∧ x1 + e1 ≤ e3 ∧ e3 ≤ x2 + e2 ∧ 0 = x2

 (8.18)

Unravelling the explicit definitions, we get (after exhaustive simplifications)

x2 = 0 ∧ f(x1) = x1 ∧ x1 ≤ 0 ∧ x1 ≤ f(0) (8.19)

Now, the disjunction of (8.16),(8.17) and (8.19) is precisely the final result (8.13)
claimed above. This concludes our detailed analysis of our example.

Notice that the example shows that combined cover computations may introduce
terms with arbitrary alternations of symbols from both theories (like f(x2 + f(x1 +
f(x1))) above). The point is that when a variable becomes explicitly definable via
a term in one of the theories, then using such additional variable may in turn cause
some other variables to become explicitly definable via terms from the other theory,
and so on and so forth; when ultimately the explicit definitions are unraveled, highly
nested terms arise with many symbol alternations from both theories.

8.4 The Non-Convex Case: a Counterexample
In this section, we show by giving a suitable counterexample that the convexity
hypothesis cannot be dropped from Theorems 8.3.3, 8.3.4. We make use of basic
facts about ultrapowers (see [CK90] for the essential information we need). We take
as T1 integer difference logic IDL, i.e. the theory of integer numbers under the
unary operations of successor and predecessor, the constant 0 and the strict order
relation <. This is stably infinite, universal and has quantifier elimination (thus
it coincides with its own model completion). It is not convex, but it satisfies the
equality interpolating condition, once the latter is suitably adjusted to non-convex
theories, see [BGR14] for the related definition and all the above mentioned facts.

As T2, we take EUF(Σf), where Σf has just one unary free function symbol
f (this f is supposed not to belong to the signature of T1).
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Proposition 8.4.1. Let T1, T2 be as above; the formula

∃e (0 < e ∧ e < x ∧ f(e) = 0) (8.20)

does not have a cover in T1 ∪ T2.

Proof. Suppose that (8.20) has a cover φ(x). This means (according to Cover-
by-Extensions Lemma 7.1.1) that for every model M of T1 ∪ T2 and for every
element a ∈ |M| such that M |= φ(a), there is an extension N of M such that
N |= ∃e (0 < e ∧ e < a ∧ f(e) = 0).

Consider the modelM, so specified: the support ofM is the set of the integers,
the symbols from the signature of T1 are interpreted in the standard way and the
symbol f is interpreted so that 0 is not in the image of f . Let ak be the number
k > 0 (it is an element from the support ofM). Clearly it is not possible to extend
M so that ∃e (0 < e ∧ e < ak ∧ f(e) = 0) becomes true: indeed, we know that
all the elements in the interval (0, k) are definable as iterated successors of 0 and,
by using the axioms of IDL, no element can be added between a number and its
successor, hence this interval cannot be enlarged in a superstructure. We conclude
thatM |= ¬φ(ak) for every k.

Consider now an ultrapower ∏DM ofM modulo a non-principal ultrafilter D
and let a be the equivalence class of the tuple 〈ak〉k∈N; by the fundamental Los
theorem [CK90], ∏DM |= ¬φ(a). We claim that it is possible to extend ∏DM to
a superstructure N such that N |= ∃e (0 < e∧ e < a∧ f(e) = 0): this would entail,
by definition of cover, that ∏DM |= φ(a), contradiction. We now show why the
claim is true. Indeed, since 〈ak〉k∈N has arbitrarily big numbers as its components,
we have that, in ∏DM, a is bigger than all standard numbers. Thus, if we take
a further non-principal ultrapower N of ∏DM, it becomes possible to change in
it the evaluation of f(b) for some b < a and set it to 0 (in fact, as it can be easily
seen, there are elements b ∈ |N | less than a but not in the support of ∏DM).

The counterexample still applies when replacing integer difference logic with
linear integer arithmetic.

8.5 Tame Combinations
So far, we only analyzed the mono-sorted case. However, many interesting examples
arising in model-checking verification are multi-sorted: this is the case of array-
based systems [GR10a] and in particular of the array-based system used in DAP
verification studied in Part I. The above examples suggest restrictions on the
theories to be combined other than convexity, in particular they suggest restrictions
that make sense in a multi-sorted context. In this section we present a combined
cover algorithm, called TameCombCover, for multi-sorted theories that could be
possibly non-convex and for which requirements different from disjointness are
imposed for the signatures.
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Most definitions we gave in Chapter 6 have straightforward natural extensions to
the multi-sorted case (we leave the reader to formulate them). A little care is needed
however for the disjoint signatures requirement. Let T1, T2 be multisorted theories
in the signatures Σ1,Σ2; we say that the combination Σ1 ∪ Σ2 is ‘almost disjoint’ if
the only function or relation symbols in Σ1 ∩ Σ2 are the equality predicates over
the sorts in Σ1 ∩ Σ2 (if there is any sort in Σ1 ∩ Σ2). We want to strengthen this
requirement: we say that an almost disjoint combination T1 ∪ T2 is tame iff the
sorts in Σ1 ∩Σ2 can only be the codomain sort (and not a domain sort) of a symbol
from Σ1 other than an equality predicate. In other words, if a relation or a function
symbol has as among its domain sorts a sort from Σ1 ∩Σ2, then this symbol is from
Σ2 (and not from Σ1, unless it is the equality predicate). Notice that the notion
of a tame combination is not symmetric in T1 and T2: to see this, notice that if
the sorts of Σ1 are included in the sorts of Σ2, then T1 must be a pure equality
theory (but this is not the case if we swap T1 with T2).

Tame combinations arise in infinite-state model-checking (in fact, the definition
is suggested by this application domain), where signatures can be split into a
signature Σ2 used to represent ‘datatypes’ like integers and a signature Σ1 for
representing elements contained in a database: this is customary in DAP verification
as shown in Part I.

The combination of IDL and EUF(Σ) used in the counterexample of Section 8.4
is not tame: even if we formulate EUF(Σ) as a two-sorted theory, the unique sort
of IDL must be a sort of EUF(Σ) too, as witnessed by the impure atom f(e) = 0
in the formula (8.20). Because of this, for the combination to be tame, IDL should
play the role of T2 (the arithmetic operation symbols are defined on a shared sort);
however, the unary function symbol f ∈ Σ has a shared sort as domain sort, so
the combination is not tame anyway.

In a tame combination, an atomic formula A can only be of two kinds: (1) we
say that A is of the first kind iff the sorts of its root predicate are from Σ1 \ Σ2; (2)
we say that A is of the second kind iff the sorts of its root predicate are from Σ2.
We use the roman letters e, x, . . . for variables ranging over sorts in Σ1 \ Σ2 and
the greek letters η, ξ, . . . for variables ranging over sorts in Σ2. Thus, if we want
to display free variables, atoms of the first kind can be represented as A(e, x, . . . ),
whereas atoms of the second kind can be represented as A(η, ξ, . . . , t(e, x, . . . ), . . . ),
where the t are Σ1-terms.

Suppose that T1∪T2 is a tame combination and that T1, T2 are universal theories
admitting model completions T ∗1 , T ∗2 . We propose the following algorithm to compute
the cover of a primitive formula; this formula must be of the kind

∃e ∃η(φ(e, x) ∧ ψ(η, ξ, t(e, x))) (8.21)

where φ is a Σ1-conjunction of literals, ψ is a conjunction of Σ2-literals and the t
are Σ1-terms. The algorithm TameCombCover has three steps.
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(i) We flatten (8.21) and get

∃e ∃η ∃η′ (φ(e, x) ∧ η′ = t(e, x) ∧ ψ(η, ξ, η′))) (8.22)

where the η′ are fresh variables abstracting out the t and η′ = t(e, x) is a
component-wise conjunction of equalities.

(ii) We apply the cover algorithm of T1 to the formula

∃e (φ(e, x) ∧ η′ = t(e, x)) ; (8.23)

this gives as a result a formula φ̃(x, η′) that we put in DNF. A disjunct of φ
will have the form φ1(x) ∧ φ2(η′, t′(x)) after separation of the literals of the
first and of the second kind. We pick such a disjunct φ1(x) ∧ φ2(η′, t′(x)) of
the DNF of φ̃(x, η′) and update our current primitive formula to

∃ξ′ (ξ′ = t′(x) ∧ (∃η ∃η′ (φ1(x) ∧ φ2(η′, ξ′) ∧ ψ(η, ξ, η′)))) (8.24)

(this step is nondeterministic: in the end we shall output the disjunction of
all possible outcomes). Here again the ξ′ are fresh variables abstracting out
the terms t′. Notice that, according to the definition of a tame combination,
φ2(η′, ξ′) must be a conjunction of equalities and disequalities between variable
terms, because it is a Σ1-formula (it comes from a T1-cover computation) and
η′, ξ′ are variables of Σ2-sorts.

(iii) We apply the cover algorithm of T2 to the formula

∃η ∃η′ (φ2(η′, ξ′) ∧ ψ(η, ξ, η′)) (8.25)

this gives as a result a formula ψ1(ξ, ξ′). We update our current formula to

∃ξ′ (ξ′ = t′(x) ∧ φ1(x) ∧ ψ1(ξ, ξ′))

and finally to the equivalent quantifier-free formula

φ1(x) ∧ ψ1(ξ, t′(x)) . (8.26)

We now show that the above algorithm is correct under very mild hypotheses. We
need some technical facts about stably infinite theories in a multi-sorted context.
We say that a multi-sorted theory T is stably infinite with respect to a set of
sorts S from its signature iff every T -satisfiable constraint is satisfiable in a model
M where, for every S ∈ S, the set SM (namely the interpretation of the sort
S in M) is infinite. The next Lemma is a light generalization of Lemma 8.1.1
and is proved in the same way:

Lemma 8.5.1. Let T be stably infinite with respect to a subset S of the set of
sorts of the signature of T . LetM be a model of T and let, for every S ∈ S, XS

be an at most countable superset of SM. Then there is an extension N ofM such
that for all S ∈ S we have SN ⊇ XS.
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Proof. Let us expand the signature of T with the set C of fresh constants (we take
one constant for every c ∈ XS \ SM). We need to prove the T -consistency of ∆(M)
with a the set D of disequalities asserting that all c ∈ C are different from each
other and from the names of the elements of the support ofM. By compactness,
it is sufficient to ensure the T -consistency of ∆0 ∪D0, where ∆0 and D0 are finite
subsets of ∆(M) and D, respectively. SinceM |= ∆0, this set is T -consistent and
hence it is satisfied in a T -modelM′ where all the sorts in S are interpreted as
infinite sets; in suchM′, it is trivially seen that we can interpret also the constants
occurring in D0 so as to make D0 true too.

Lemma 8.5.2. Let T1, T2 be universal signature disjoint theories which are stably
infinite with respect to the set of shared sorts (we let Σ1 be the signature of T1 and
Σ2 be the signature of T2). LetM0 be model of T1 ∪ T2 and letM1 be a model
of Ti extending the Σi-reduct ofM0 (i = 1, 2). Then there exists a model N of
T1 ∪ T2, extendingM0 as a Σ1 ∪ Σ2-structure and whose Σi-reduct extendsM1.

Proof. Using the previous lemma, we build infinitely many modelsM0,M1,M2, . . .
such that: (i) M2j is a Σ3−i-structure which is a model of T3−i; (ii) M2j+1 is a
Σi-structure which is a model of Ti; (iii) M2j+2 is a Σ3−i-extension of M2j; (iv)
M2j+3 is a Σi-extension ofM2j+1; (v) the supports of theMk, once restricted to
the Σ1 ∩ Σ2-sorts (call |Mk| such restrictions), form an increasing chain |M0| ⊆
|M1| ⊆ |M2| ⊆ · · · . The union over this chain of models will be the desired N .

We are now ready for the main result of this section:

Theorem 8.5.3. Let T1 ∪ T2 be a tame combination of two universal theories
admitting a model completion. If T1, T2 are also stably infinite with repect to
their shared sorts, then T1 ∪ T2 has a model completion. Covers in T1 ∪ T2 can be
computed as shown in the above three-steps algorithm.

Proof. Since condition (i) of Lemma 7.1.1 is trivially true, we need only to check
condition (ii), namely that given a T1 ∪ T2-model M and elements a, b from its
support such thatM |= φ1(a) ∧ ψ1(b, t′(a)) as in (8.26), then there is an extension
N ofM such that (8.21) is true in N when evaluating x over a and ξ over b.

If we let b′ be the tuple such that M |= b′ = t′(a), then we have M |= b′ =
t′(a)∧φ1(a)∧ψ1(b, b′). Since ψ1(ξ, ξ′) is the T2-cover of (8.25), the Σ2-reduct ofM
embeds into a T2-model where (8.25) is true under the evaluation of the ξ as the b.
By Lemma 8.5.2, this model can be embedded into a T1∪T2-modelM′ in such a way
thatM′ is an extension ofM and thatM′ |= b′ = t′(a)∧φ1(a)∧φ2(c′, b′)∧ψ(c, b, c′)
for some c, c′. Since φ1(x) ∧ φ2(η′, t′(x)) implies the T1-cover of (8.23) andM′ |=
φ1(a) ∧ φ2(c′, t(a)), then the Σ1-reduct of M′ can be expanded to a T1-model
where (8.23) is true when evaluating the x, η′ to the a, c′. Again by Lemma 8.5.2,
this model can be expanded to a T1 ∪ T2-model N such that N is an extension
of M′ (hence also of M) and N |= φ(a′, a) ∧ c′ = t(a′, a) ∧ ψ(c, b, c′), that is
N |= φ(a′, a)∧ψ(c, b, t(a′, a)). This means that N |= ∃e ∃η(φ(e, a)∧ψ(η, b, t(e, a))),
as desired.
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In the context of DAP verification, where data representation and manipulation
capabilities can be extended with arithmetic, the following minimal type of tame
combinations becomes extremely interesting: consider the combination TDB ∪ Tint,
where TDB is a multi-sorted version of EUF(Σ) in a signature Σ containing only
unary function symbols and relation symbols of any arity, and where Tint is typically
some fragment of linear arithmetics, where Tint-sorts are considered as value sorts.
We elaborate on this intuition in more detail in the Example 8.5.15, where, by
employing the nomenclature of Chapter 3, we generalize the discussion to DB
extended-schemas.

We recall from Chapter 7 that TDB -cover computation for primitive formulae is
quadratic in complexity. Model-checkers like MCMT represent sets of reachable
states by using conjunctions of literals and during preimage computations quantifier
elimination needs to be applied to primitive formulae. Now, if all relation symbols
are at most binary, TDB -cover computation produces conjunctions of literals out
of primitive formulae. Thus, step (ii) in the algorithm from Section 8.5 becomes
deterministic and the only reason such an algorithm may become expensive (i.e.,
nonpolynomial) lies in the final quantifier elimination step for T ∗int. This step
might be extremely expensive if substantial arithmetic is involved, but it might
still be efficiently handled in practical cases where only very limited arithmetic
is used (e.g., difference bound constraints like x − y ≤ n or x ≤ n, where n is a
constant). Our algorithm for covers in tame combinations has been implemented
in version 3.0 of MCMT.

Example 8.5.15

Let 〈Σ ∪ Σ′, T ∪ T ′〉 be a DB extended-schema that is a tame combination of
a (plain) DB schema 〈Σ, T 〉 admitting covers, and T ′ := EUF ∪ LRA as in
Example 8.3.14. A concrete example of plain DB schema is the following: EUF
over a signature Σ comprising three sorts S1,S2,S3, and two function symbols
fR,1 : S1 → S2 and fR,2 : S1 → S3. We know by Chapter 7 that EUF admits
covers, and we can use SuperCover to compute them. Moreover, from Chapter 3,
we can interpret this DB schema as a classical database schema containing a
ternary relational schema R(id : S1, a1 : S2, a2 : S3), where the attribute id is
the primary key and S3 is a value sort.

We suppose that the unique sort of T ′ coincides with S3. It can be trivially
seen that this combination is tame. We already know from Example 8.3.14
that T ′-covers exist and we can use ConvexCombCover to compute them: this
procedure modularly uses the cover algorithms for the component theories, which
are SuperCover for EUF and Fourier-Motzkin quantifier elimination (FM-QE)
for LRA.

Since T ∪ T ′ is a tame combination, we can then employ TameCombCover
to compute T ∪ T ′-covers. To summarize, for the DB extended-schema 〈Σ ∪
Σ′, T ∪ T ′〉 covers exist and can be computed by exploiting the algorithms
TameCombCover, ConvexCombCover, SuperCover and FM-QE. We recall from
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Section 4.1 that existence of covers (or, equivalently, the existence of model
completions) is exactly one of the requirements (together with finite model
property and the decidability of constraint satisfiability) to make our machinery
work for verifying U-RASs.

8.5.1 An example of combined covers for the tame com-
bination

Let T1 be EUF(Σ1), where Σ1 is a multisorted signature with three sorts S1, S2
and S3 and with a function symbol f : S1 ×S2 → S3. Let T2 be LIA (which is not
convex), where its (unique) sort is S3, which is in common with Σ1. We notice that
T1 ∪ T2 is a tame combination, since the common sort S3 is the codomain sort (and
not the domain sort) of the unique symbol f from Σ1 different from equality. We
show a simple example on how to compute a T1∪T2-cover using the algorithm above.

Let
∃e
(
f(e, x1) ≤ f(e, x2) ∧ 2ξ2 ≤ f(e, x1) + ξ1

∧ f(e, x2) + ξ3 < 4ξ4 ∧ ξ3 ≤ ξ1

)
(8.27)

be the formula for which we would like to compute a T1 ∪ T2-cover: the only truly
existentially quantified variable here is e.

We first apply Step (i), and we abstract out f(e, x1 and f(e, x2) by introducing
two fresh variables η′1 and η′2:

∃e, η′1, η′2

(
η′1 = f(e, x1) ∧ η′2 = f(e, x2) ∧ 2ξ2 ≤ η′1 + ξ1

∧ η′2 + ξ3 < 4ξ4 ∧ ξ3 ≤ ξ1 ∧ η′1 ≤ η′2

)
(8.28)

Then, in order to apply Step (ii), we need to compute the T1-cover of the
following formula:

∃e( η′1 = f(e, x1) ∧ η′2 = f(e, x2)) (8.29)

and we obtain:

x1 = x2 → η′1 = η′2

which, in turn, is equivalent to the following formula in DNF form:

x1 6= x2 ∨ η′1 = η′2

Now, we analyze the two different cases create by each disjunct in the previous
formula.
First Case. If we pick up the disjunct x1 6= x2, after updating Formula (8.28),
we get the following equivalent formula:

∃η′1, η′2

(
x1 6= x2 ∧ 2ξ2 ≤ η′1 + ξ1 ∧ η′2 + ξ3 ≤ 1 + 4ξ4

∧ ξ3 ≤ ξ1 ∧ η′1 ≤ η′2

)
(8.30)
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We now apply Step (iii), by computing the T2-cover of the formula:

∃η′1, η′2

(
2ξ2 ≤ η′1 + ξ1 ∧ η′2 + ξ3 ≤ 1 + 4ξ4

∧ ξ3 ≤ ξ1 ∧ η′1 ≤ η′2.

)
(8.31)

This is in general achieved by applying the Cooper’s algorithm [Coo72]. In this
case, it is sufficient to notice that Formula (8.31) implies:

2ξ2 − ξ1 ≤ η′1 ∧ η′1 ≤ η′2 ∧ η′2 ≤ 1 + 4ξ4 − ξ3

which provide lower and upper bounds for both η′1 and η′2, as wanted. Hence,
the T2-cover of Formula (8.31) is:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (8.32)

We then update our Formula (8.30) and we get the first disjunct of our
T1 ∪ T2-cover:

x1 6= x2 ∧ 2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (8.33)

Second Case. If we pick up the disjunct η′1 = η′2, after updating Formula (8.28),
we get the following equivalent formula:

∃η′1, η′2

(
η′1 = η′2 ∧ 2ξ2 ≤ η′1 + ξ1 ∧ η′2 + ξ3 ≤ 1 + 4ξ4

∧ ξ3 ≤ ξ1 ∧ η′1 ≤ η′2

)
(8.34)

We now apply Step (iii), by computing the T2-cover of the previous formula.
In this case, it is sufficient to notice that Formula (8.34) implies:

2ξ2 − ξ1 ≤ η′1 ∧ η′1 = η′2 ∧ η′2 ≤ 1 + 4ξ4 − ξ3

which provide lower and upper bounds for both η′1 and η′2, as wanted. Hence,
the T2-cover of Formula (8.34) is:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (8.35)

We then update our Formula (8.34) and we get the second disjunct of our
T1 ∪ T2-cover:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (8.36)

Hence, by taking the disjunction of Formula (8.33) and of Formula (8.36) it is
straightforward to see that the T1 ∪ T2-cover of Formula (8.27) is equivalent to:

2ξ2 − ξ1 ≤ 1 + 4ξ4 − ξ3 ∧ ξ3 ≤ ξ1 (8.37)
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8.6 Discussion on Related Works on Covers
We conclude the chapter by discussing the related work on covers.

We noticed in Section 7.3 that our problem is different from the problem
of computing ordinary quantifier-free interpolants via saturation based theorem
proving [KV09]: for ordinary interpolants, we have as input two quantifier-free
formulae φ(e, y), φ′(y, z) such that φ(e, y)→ φ′(y, z) holds; in the context of covers,
we have a single formula φ(e, y) as input and we need to find an interpolant
which is good for all possible φ′(y, z) such that φ(e, y)→ φ′(y, z) holds. Ordinary
interpolants can be extracted from a refutation of φ(e, y) ∧ ¬φ′(y, z), whereas in
our case no refutation is given at all (and we are not even supposed to find one).

The algorithm for computing EUF-covers shown in [GM08] is quite different
from ours: very roughly speaking, determines all the conditional equations that
can be derived concerning the nodes of the congruence closure graph. However,
that algorithm presents some issues/bugs that need to be fixed: indeed, the
example exhibited in Section 7.3 points out that, in some cases, covers must
contain disjunctions of disequations, whereas the algorithm from [GM08] outputs
only equalities, conditional equalities and single disequalities, so it cannot correctly
handle this example. In addition, the correctness proof has never been published
(the technical report mentioned in [GM08] is not available).

We mention here a subsequent work (i.e., [GGK20a; GGK20b]) that we carried
out after the introduction of SuperCover (and, specifically, after the publication
of their corresponding papers [Cal+19d; Cal+21a]): in this work, we studied
additional algorithms for computing covers in EUF (their correctness proof still
relies on Lemma 7.1.1). These algorithms are quite different in their shapes from
SuperCover: they are not based, as SuperCover, on well-established automated
reasoning techniques such as Superposition Calculus, but they exploit efficient
dedicated Directed Acyclic Graph (DAG)-based representations of terms for
computing covers in a compact form.

Turning to combined covers, it is worth mentioning that Gulwani and Musuvathi
in [GM08] also have a combined cover algorithm for some convex, signature disjoint
theories. However, a full correctness and completeness proof for such an algorithm
is missing, since, as remarked above, the technical report mentioned in [GM08] has
never been published. Moreover, their algorithm looks quite different from ours, and
we underline that our combined algorithm is rooted on different hypotheses. In fact,
we only need the equality interpolating condition and we show that this hypothesis
is not only sufficient, but also necessary for cover transfer in convex theories;
consequently, our result is formally stronger. The equality interpolating condition
was known to the authors of [GM08] (but not even mentioned in their paper [GM08]):
in fact, it was introduced by one of them some years before [YM05]. The equality
interpolating condition was then extended to the nonconvex case in [BGR14], where
it was also semantically characterized via the strong amalgamation property.
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We implemented a prototype of our backward reachability algorithm for artifact
systems on top of the mcmt model checker, extending it with the features required
to formalize and verify RASs. As mentioned before, Model Checker Modulo Theories
(mcmt)1 is a model checker for checking safety of infinite-state systems: the tool is
based on the integration of SMT solving and the backward reachability procedure.
Roughly speaking, as explained in Section 4.3, backward search requires to perform
an inclusion test and a disjointness test: these tests are satisfiability checks that
are discharged to a backend SMT solver via proof obligations. mcmt manages
safety verification by exploiting as its model-theoretic framework the declarative

1http://users.mat.unimi.it/users/ghilardi/mcmt/
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formalism of array-based systems. In this chapter, after a very brief overview of
mcmt and its workings, we describe in Section 9.2 the basic syntax of its language.
Then, we focus on the general format of the mcmt specification files. Specifically,
in Section 9.3 we present how to use the “database-driven” mode and how to
declare in the input file the DB schema, the initialization, the unsafe formula, the
existentially quantified variables to eliminate and the transitions of our U-RAS
model; in Section 9.4 we comment on how to run the tool and we give a useful
explanation on the displayed information after its execution. Finally, in Section 9.5
we describe some initial experiments on running mcmt over an interesting and
significant benchmark of data-aware processes encoded into RASs.

9.1 MCMT: a Brief Overview

Since their first introduction in [Ghi+08; GR10a], array-based systems have been
provided with various implementations of the standard backward reachability
algorithms (including more sophisticated variants and heuristics). Starting from
its first version [GR10b], mcmt was successfully applied to cache coherence and
mutual exclusions protocols [GR10a], timed [CGR10] and fault-tolerant [Alb+12b;
Alb+10] distributed systems, and then to imperative programs [AGS14a; AGS17];
interesting case studies concerned waiting time bounds synthesis in parameterized
timed networks [Bru+12] and internet protocols [Bru+17]. Further related tools
include safari [Alb+12a] and asasp [AAR11]; finally, [Con+12; CMZ15; Con+13;
CDZ18] implement the array-based setting on a parallel architecture with further
powerful extensions.

The work principle of mcmt is rather simple: the tool generates the proof
obligations arising from the safety and fixpoint tests in backward search (Lines 2-3
of Algorithm 2) and passes them to the background SMT solver (currently it is
Yices [DDM06]). In practice, the situation is more complicated because SMT
solvers are quite efficient in handling satisfiability problems in combined theories at
quantifier-free level, but may encounter difficulties with quantifiers. For this reason,
mcmt implements modules for quantifier elimination and quantifier instantiation.
A specific module for the quantifier elimination problems mentioned in Line 6 of
Algorithm 2 has been added to Version 2.8 of mcmt.

The following three sections should be considered as a relevant summary of
the information contained in the User Manual of mcmt (http://users.mat.
unimi.it/users/ghilardi/mcmt/) that are needed for the database-driven
setting we propose: most of the material is taken from it. We report it here
for the sake of completeness.

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
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9.2 Basic Syntax of MCMT
The basic mcmt syntax is based on types, index variables and array variables.
Types that can be recognized by MCMT include int, real, bool, i.e., integer,
real numbers and booleans, and also the additional types coming from ‘db-sorts’
of the ‘db_driven’ mode. New types can also be declared by the user: to declare
a free sort (say S), one need to use

:smt (define-type S)

An mcmt specification file defines an array based system: thus, it is possible to
employ a set of indices index and arrays defined on this set. Since it is natural
to associate to each element of index a natural number (which is its identifier /
its address), we identify index with a subset of the natural numbers2 (typically
index is finite, however index can be the whole set of natural numbers).

mcmt uses the names
z1, z2, z3, . . .

for index variables; in addition there are three special index variables
x, y, j

whose use will be explained in the next section.
Arrays are the most important ingredient in array based systems. We distinguish

between two kinds of array variables, i.e., local and global array variables. Local
array variables are introduced by the declaration

:local <arrayvar-id> <type-id>

This is the way for declaring an array variable with identifier <arrayvar-id>
whose elements are of type <type-id> (the domain of the array variable is the
implicitly declared type index).

When an array is declared as a local array variable, for different index values
(i.e., for different locations corresponding to these index values) the corresponding
elements of the array may be different. On the contrary, global array variables
represent constant arrays and are introduced by the declaration

:global <arrayvar-id> <type-id>

Contrary to local arrays, for different index values the corresponding elements of
global array are forced to be identical. Hence, global arrays do not really denote
arrays, but single values (that are internally treated as constant arrays by the tool).

The functional application of an array to an index is denoted by [-]; more
precisely, if zi is an index variable and a is an array variable identifier, a[zi]
is a valid term in the mcmt syntax, whose type is the one of the codomain of a.
Similarly, a[x], a[y], a[j] are valid terms too.

The previously defined terms can be combined to form complex terms and
literals according to the standard operations/relations defined on the various types,
following a format that takes inspiration from SMT-LIB2. For example, using the
above declarations, one can write the following literals:

2It is possible (although rather unnatural) to declare index as a subset of another type
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(> s[z2] 3), (= (and w[z1] v) true), (not (= a[z1] 2)),
(= s[z1] z2).
Other valid terms (of types int and bool, respectively) are for instance (+
s[x] 2) and (or v, w[j]).

The input language of mcmt is dereference flat [AGS14b]: this means that
subterms like a[t] are allowed only in case t is a variable. Thus, expressions
like s[1], s[2], . . . are not valid: instead of the atom (< s[9] 0), one
must write the conjunction of

(= z1 9) (< s[z1] 0)

which is syntactically correct (the variables zi are always implicitly existentially
quantified, see next section).

It is possible to declare free constant and function symbols: as customary in
many automated reasoning contexts, n-ary relation symbols are represented as
n-ary function symbols returning a boolean value. For instance, the expression

:smt (define c::int))

defines a constant of type int, whereas
:smt (define S::(-> int int bool))

declares a binary predicate S on integer numbers. In principle, it is also possible
to declare macros like
:smt (define (MC p::bool n1::int n2::int )::bool (=> p
(= n1 n2) ))

(meaning that from now on expressions like (MC b k l) have to be interpreted
as the expression (=> b (= k l) )).

9.3 MCMT Specifications: Database Driven
Mode

Each line in an input specification file for mcmt needs to begin by a keyword
preceded by a colon.

We have already discussed the syntax of commands like
:smt <string>

to define types, symbols and macros.
We now focus our attention on the database driven mode of mcmt, which

allows us to write array-based specification files formalizing U-RAS in the format
of the mcmt syntax.

9.3.1 DB Schema Declaration

As already known from the theory of U-RAS, a Universal RAS supports two kinds
of relations: the static relations belonging to a read-only database DB (the last-
mentioned relations are not updated during a run of the system) and the artifact
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relations: artifact relations can be evolved during a run of the system, for instance
by using insertion or deletion updated.

In the mcmt encoding, the read-only database relations are declared via SMT
assertions (see below), whereas the artifact relations are encoded via entries and
local array variables, as specified in the following. Indeed, an n-ary artifact relation
R(a1, . . . , an) can be seen as an n-tuple of local arrays

: local r1
· · ·

: local rn

The index sort is now interpreted as the sort of the entries of the artifact relations
(this will be a subtype of int, and mcmt has a special unary predicate to identify
it for internal use, see below). Artifact variables are representeed as global arrays.

To exploit the specificity of U-RASs, mcmt needs to be executed in a dedicated
mode, available since version 2.8. To activate this mode, the specification file needs
to contain (before any other relevant declaration) the line

: db_driven < id >

where <id> is a string naming the ‘entries predicate’ (if <id> is left empty, then
ENTRY is used as a default name).

Whereas artifact components and artifact variables are specified via local and
global arrays, the read-only database, i.e., the DB schema of the U-RAS, need to
be declared following specific instructions. Sorts, unary functions (i.e. relation
components for DB relations equipped with key dependencies) and ‘plain’ relations
(for relations not possessing a key in DB extended-schemas) must be declared to
the SMT solver following the syntax explained in Section 9.2. To define, e.g., the
id-sort S from the DB signature Σ, use

: smt (define-type S)

To declare a constant c of sort S, use
:smt (define c ::S)

In the db-driven mode, DB constants are assumed to be distinct (‘unique name
assumption’) and to be distinct from the null-entry constants (see below).

For example, the sorts from the DB schema of the running example of Chapter 3
are declared as follows:
:smt (define-type CompInId)
:smt (define-type JobCatId)
:smt (define-type EmpId)
:smt (define-type UserId)
:smt (define-type Num)
:smt (define-type String)
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To declare a unary function f from Σfun of domain sort S and codomain sort
T (supposing S and T have already been declared), the user needs to use

:smt (define f ::(-> S T))

For example, the unary functions from the DB schema of the running example
are declared as follows:
:smt (define what ::(-> CompInId JobCatId))
:smt (define who ::(-> CompInId EmpId))
:smt (define jobCatDescr ::(-> JobCatId String))
:smt (define empName ::(-> EmpId String))
:smt (define userName ::(-> UserId String))

To define a binary relation R of domain sorts S and T, the user must use
:smt (define R ::(-> S T bool))

Unary relations follow the natural corresponding syntax as well as ternary,
quaternary, etc. relations. However, we remark that the cover algorithm for the
DB theory T := EUF(Σ) ∪ {Axiom (3.1)} (or, equivalently, quantifier elimination
algorithms in T ∗) has been implemented only for unary and binary relations so far,
but this is enough for all the examples and the benchmark we consider.

mcmt checks whether the signature Σ of the read-only database is acyclic; if it
is not, the reader is warned that there might be (in principle, but unlikely) spurious
unsafety answers due to insufficient instantiations in satisfiability checks.

After having declared the above data, the user needs also to provide a summary
of the declarations (the summary is necessary, because in principle one might not
want all the declared data to be part of the read-only database). The summary
is formed by lines of the kind

: db_sorts < id1 > · · · < idn >
: db_functions < id1 > · · · < idn >
: db_relations < id1 > · · · < idn >

listing all the declared sorts, functions and relations that should be part of the
read-only database. The sorts int and real should not be included in the
above list of DB sorts, although it may be the case that a DB function has
int or real as codomain sort.

mcmt adds by itself a further constant NULL_S for all the above listed sorts
S, formalizing the undef-entry for each of these sorts. undef-entries NULL_int and
NULL_real of sort int and of sort real, respectively, are also added. These
undef-entries can occur in the specification file at any place, and they must not
be declared by the user. The constants NULL_S correspond to the constants
called undef (cf. Section 3.1).

When the DB schema has been declared, we then need to initialize the system,
to declare the unsafe formula and the existentially quantified variables the system
needs to eliminate, and finally to define the transitions. This is exactly what is
described in the next subsections.
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9.3.2 Initialization
A Universal RAS must be initialized: in particular, its local array variables (e.g.,
the artifact relations) and its global variables (i.e., the artifact variables). In our
specification files, initialization is constrained by a universally quantified formula.
The following is the format used for declaring the initialization:

: initial
: var <indexvar-id>

: cnj <list-of-quantifier-free-formulae>

There may be one or two occurrences of the keyword :var; <indexvar-id>
needs to be the special index variable x or the special index variable y.
The string <list-of-quantifier-free-formulae> is a finite list of
quantifier-free formulae (intended conjunctively, cf. the keyword :cnj), where only
the variables declared by :var can occur. Such variables are implicitly universally
quantified, so, for example, the expression

: initial
: var x

: cnj (= a[x] 1) (= s[x] false) (= w[x] false)

is interpreted as the formula (in Yices format)

(forall ((x::index))

(and (= a[x] 1) (= s[x] false) (= w[x] false)))

In the specific case of U-RASs, usually they are initialized by setting the global
array variables and all the locations of local array variables to NULL_S (where S is
the suitable sort of the array variable), i.e., to the undefined value undef.

For example, the initial formula of the (extended version of the) running example
(Example 3.2.6) is the following:
:initial
:var x
:cnj (= T1_uid NULL_UserId) (= T1_eid NULL_EmpId) (= T1_jid

NULL_JobCatId) (= T1_jtype NULL_String) (= T1_timeout
NULL_Num) (= T1_score -1) (= T1_pos_status NULL_String) (=
T1_date NULL_String)(= T2_uid NULL_UserId)(= T2_eid NULL_EmpId)(=
T2_jid NULL_JobCatId)(= T2_jtype NULL_String)(= T2_app_status
NULL_String)(= T3_uid NULL_UserId)(= T3_eid NULL_EmpId)(= T3_jid
NULL_JobCatId) (= T3_withdraw_status NULL_String)(= SelectedJob
false)(= SelectedApplication false)(= actT2 false)(= actT3
false)(= Init true)(= JobOffers1[x] NULL_JobCatId)(=
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JobOffers2[x] NULL_String)(= JobOffers3[x] NULL_String)(=
JobOffers4[x] NULL_String)(= Application1[x] NULL_UserId)(=
Application2[x] NULL_JobCatId)(= Application3[x] NULL_EmpId)(=
Application4[x] -1)(= Application5[x] NULL_String)

9.3.3 Unsafe States
State formulae for U-RASs are obtained by prefixing a string ∃z1 · · · ∃zn of index
existential quantifiers to a quantifier-free matrix φ (in φ only the variables z1, . . . , zn
can occur free). A state formula is primitive (or a cube) iff its matrix is a conjunction
of literals and is primitive differentiated [GR09] iff it is primitive and the matrix
contains all disequations zi 6= zj for i, j = 1, . . . , n and i 6= j. MCMT uses primitive
differentiated formulae to represent (backward) reachable sets of states. In such
formulae, the disequations zi 6= zj are left implicit, in the sense that the user does
not need to write them since they are always automatically added by the tool. The
external existential quantifiers are left implicit as well.

The first state formula that the user needs to write in the specification file is
the unsafe formula, i.e., the formula describing the set of unsafe states (the states
we desire the system not to be able to reach). Such a formula is declared as follows:

: unsafe
: var <indexvar-id>

: cnj <list-of-literals>

Here <list-of-literals> is a list of literals that should be written by following
the same rules as for the case of the :initial command. However, here the
user must declare and eemploy the standard index variables z1, z2, z3, z4
instead of the special ones.

So, for example, the specification

: unsafe
: var z1

: var z2

: cnj (= a[z1] 7) (= a[z2] 5)

should be interpreted as the formula (in Yices format)

(exists (z1::index z2::index)

(and (not (= z1 z2)) (= a[z1] 7) (= a[z2] 5)))

For example, the unsafe formula for the running example (Example 4.3) is
the following:
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:u_cnj (= T1_pos_status Notified)(not (= Application1[z1]
NULL_UserId))(not (= Winner Application5[z1]))(not (= Loser
Application5[z1]))

If the set of unsafe states is described by a state formula which is not primitive
differentiated, it is always possible to convert such a formula to a disjunction of
primitive differentiated ones. In such a case, there is a special syntax for the second,
third, etc. disjuncts: these can all be introduced by the following single commands

:u_cnj <list-of-literals>

For these formulae, there is no need to use :var declarations for the index variables
z1, z2, z3, etc. In case the user uses only :u_cnj declarations and omit the
unsafe formula (i.e., if one omits the :unsafe declaration), mcmt works correctly:
it just automatically adds false as a first unsafe formula.

Remark 9.3.1. Notice that for unsafe formulae only lists of literals can be employed
after a :cnj or a :u_cnj declaration; for initial formulae on the contrary, lists of
arbitrary quantifier-free formulae can be used after the :cnj declaration.

In conclusion: mcmt behaves correctly if the above instructions for writing
specification files are strictly followed. Deviations from the above instructions
produce displayed warnings and may cause mcmt to pass to the underlying SMT
solver not well-typed proof obligations. Deviations include user-defined macros and
cyclic signatures; more serious and possibly harmful deviations (e.g., the use of
real and/or int as non-value sorts) produce stronger warnings and possibly
also spurious outcomes.

9.3.4 Elimination of Existentially Quantified Variables

To model real-time systems in the timed automata style, existentially quantified
(real, integer) variables for data values may be used in guards. These variables
are not allowed in state formulae, hence they must be eliminated. These variables
were already supported in the versions of mcmt older than 2.8. Since version
2.8, the algorithm for computing covers in the standard DB (extended-)theory
(or, equivalently, for quantifier elimination in its model completions T ∗) has been
implemented in mcmt so as to correctly eliminate existentially quantified data
variables ranging over the read-only database of U-RASs.

The main novelty introduced since version 2.9 is that int and real can be now
used as value sorts in DB extended-schemas (cf. Section 3.1.1). Being value sorts,
there can be DB functions having int or real as codomain sorts; however, int
and real should not be domain sorts of DB functions nor arguments of DB relations:
there are serious theoretical limitations for this restriction (model completions may
not exist, see Section 8.4) and the tool may not behave properly if such restriction
is violated (the user is informed about the problem - when it arises - via a displayed
message and is asked to confirm that she is aware of the consequences).
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Existential variables to be eliminated are introduced in mcmt as follows. First,
before writing any transition, the user needs to declare such variables using the
instruction

:eevar <char> <type-id>

where <char> is a single character (the name of the existentially quantified variable)
and <type-id> can be real or int or S (for some sort S from the DB schema).

Whereas mcmt knows that variables x,y, j, z1, z2, ... must range
over entries for artifact relations, the situation is different for existentially quantified
variables declared as :eevar. As clear from the declaration, these variables can
only range over reals, integers or over sorts of the read-only database and are
subject to quantifier elimination.

Once the preimage of the formula representing a set of states is computed, the
real variable is eliminated by using Fourier Motzkin quantifier elimination [Sch99].
As to the integer variable, the situation is more complex because mcmt does not
support yet full integer quantifier elimination. The procedure applied instead is
the following. First, integer literals like (< t u) are replaced by (<= (+ t
1) u). After that, Fourier Motzkin is used: the user is informed that the set
of backward reachable states obtained in this way is over-approximated and, in
case an unsafe trace is found, he is warned once again about the fact the trace
could be spurious because of over-approximation. However, in some trivial cases,
Fourier Motzkin and integer quantifier elimination coincide: in such cases, there is
no over-approximation at all and no over-approximation warning is displayed. To
sum up, the current implementation quantifier elimination in linear real/integer
arithmetic is in principle incomplete, but still sufficient to handle all the examples
and benchmark contained in this thesis.

In addition to the quantifier elimination for linear integer and real arithmetic,
we have a specific quantifier elimination procedure for the data variables from the
sorts of the DB schema. This procedure refers to results on cover computation (or,
equivalently, quantifier elimination in model completions) and in their combinations.
Currently, mcmt provides cover computations only for relational signatures with
free unary or binary predicates and free unary functions and their combinations
with linear (both integer and real) arithmetic, following the procedures explained
above in the previous chapter.

Cover computations for data variables should not fail in principle, unless the
user uses some deviating constructs (e.g. in case she introduced some macros
via smt assertions). In such cases, the tool does not abort: it converts the non-
eliminated variable into a genuine existentially quantified variable interpreted in
the complement of the entry predicate (which is ENTRY by default, see above).

The user should take care of the following limitations of mcmt:
1. one can declare at most one existentially quantified variable of type int,

at most one existentially quantified variable of type real and up to 10
existentially quantified variables ranging over the other sorts of the read only
database;
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2. inside the same transition, one cannot use variables of different sorts, unless
such sorts are all non-numerical sorts of the read only database (i.e., id sorts);

3. the identifier of an existentially quantified variable must be a single character;
4. an existentially quantified variable of sort S is assumed to to range over

elements which are distinct from NULL_S (this assumption simplifies cover
computations).

9.3.5 Transitions

Transitions represent how the system evolves: at each step of the evolution of the
system, one transition is nondeterministically chosen and executed, if possible.

In a U-RAS, transition are composed by a guard and an update function.
The guard is an existentially quantified (both over artifact sorts and basic sorts)
primitive differentiated formula: mcmt accepts guards with at most two existentially
quantified variables, which can be either x or y. The update function is a case-defined
function which is given in lambda-abstraction notation (the lambda-abstracted
variable must be j).

The allowed format for a transition declaration is the following:

: transition
: var x

: var y

: var j

: guard <list-of-literals>

: uguard <list-of-literals>

· · ·
: uguard <list-of-literals>

: numcases <pos-int>

: case (= x j)

: val <term1-1>

: val <term1-2>

· · ·
: case <list-of-literals>

: val <term2-1>

: val <term2-2>

· · ·
· · ·

where
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1. :var j is mandatory, :var x is needed for one and two-variables transitions
and :var y is needed only for two-variables transitions;

2. the <list-of-literals> following :guard is the lists of literals that
forms the body of the guard of the transition;

3. the lines starting with :uguard are optional and will be discussed in
Subsection 9.3.6;

4. <pos-int> is a positive integer giving the number of cases of the case-
definable function specifying the update of the transition;

5. the :cases specify, through suitable conjunctions of literals, the case-partition
used in the definition of the update function;

6. each keyword :val is followed by a well-formed term of appropriate type:3
this term gives the updated value of corresponding array in the given case; the
number of :val keywords must be equal to the number of array declarations

If the transition has one or two variables (i.e., if :var x has been declared),
the first occurrence of the :case keyword must be followed by the single literal
(= x j); in case (= x j) is omitted in the first :case declaration, the system
automatically makes the correction. Similarly, in the second, third, etc. :case,
the system always automatically adds the literal (not (= x j)) to the list of
literals following the :case keyword.

If the variables x, y have been declared both, the system assumes that (not
(= x y)) in the guard (the guard is primitive differentiated by default).

We give an example of a transition from the extended version of our running
example. This transition formalizes a non-deterministic event that can happen
during the period while it is possible to submit applications for a job position:
the precondition of this even is that the status of the job position is still open
and the “timeout” has not reached “Zero” yet. When this transition is non-
deterministically fired, the time allowed for the position to remain open passes
and the expiration date is reached, causing the effect of updating the “timeout”
to “Zero”. This implies that new applications are not possible anymore, and the
call for job position has been closed.
:comment T_1 Waiting
:comment T4
:transition
:var j
:guard (= actT2 false)(= actT3 false)(= Init false)(= SelectedJob

false)(= SelectedApplication false)(not (= T1_pos_status
Open))(not (= T1_timeout Zero))

:numcases 1
:case
:val JobOffers1[j]
:val JobOffers2[j]
:val JobOffers3[j]
:val JobOffers4[j]
:val Application1[j]

3In the term, only the declared variables can occur (i.e. we can have occurrences of x, j and
also of y, in case the transition has two existentially quantified index variables).
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:val Application2[j]
:val Application3[j]
:val Application4[j]
:val Application5[j]

:val T1_uid
:val T1_eid
:val T1_jid
:val T1_jtype
:val Zero
:val T1_score
:val T1_pos_status
:val T1_date
:val T2_uid
:val T2_eid
:val T2_jid
:val T2_jtype
:val T2_app_status
:val T3_uid
:val T3_eid
:val T3_jid
:val T3_score
:val T3_withdraw_status
:val actT2
:val actT3
:val Init
:val SelectedJob
:val SelectedApplication

9.3.6 Universal Quantifiers in Guards

U-RAS have a limited form of universal quantification in the guards. The kind of
universal quantification we are considering leads to guards of the kind

∃x, eevar (φ(x, eevar) ∧ ∀j ψ(j, x, eevar)) (9.1)

where φ, ψ are quantifier-free formulae: in φ only x (of artifact sort) and eevar

(of basic sort) occur and in ψ j (of artifact sort), x and eevar can occur). These
guards make the task of employing the backward reachability procedure challenging,
but this problem can be solved by adopting the strategy described in Section 4.4:
this is achieved by transforming the original U-RAS into a plain RAS that has
eliminated the universal guard.

Notice that a safety proof for the transformed RAS implies a safety certification
for the original U-RAS too, because the latter has fewer runs. In case an unsafe
trace is discovered, however, the trace might be spurious (and MCMT displays
a further warning in this sense).

Now, we exhibit how to insert universal quantifiers in the guards of the transitions
of the specification file. The formula ψ(j, x, eevar) in (9.1) can be converted to
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DNF, i.e., a disjunction of conjunctions of literals: these conjunctions of literals
can be introduced one after the other by using the keyword :uguard.

In order to declare a universal guard, the user needs to add, just right after
the :guard statement, the following lines:

: uguard <list-of-literals>

...

: uguard <list-of-literals>

where the <list-of-literals> following :uguard is the lists of literals
that forms the body of one disjunct of the universal guard.

9.4 Running MCMT
The distribution of mcmt v.3.0 contains an executable file called mcmt; to execute
an mcmt specification file, the user needs to type (from command line)

./bin/mcmt [options] <filename>

The arguments [options] are not necessary (see the User Manual for details
about the options that can be used). One useful option for parsing/debugging
is −y, which produces an executable file for z3/yices named .smt-log; if the
user has z3/yices in her path, she can run

z3 -smt2 .smt-log

or respectively

yices .smt-log

to detect syntax errors from the input file.

9.4.1 Displayed Information
If not executed in silent mode (see the user manual for this), mcmt displays some
information about heuristics, reachable states formulae, trace invariants found,
and statistics. We provide here a short description of the node representation.
The interpretation of the displayed line

node19 = [t5_2_3][t6_2][t7_2][t6_1][t7_1][0] (9.2)

is that mcmt is considering a formula representing a set of states that can reach
an unsafe state by executing transitions t5, t6, t7, t6, t7 in this order. It
is also possible to obtain additional information from this line. Formula (9.2) is
primitive differentiated and has three quantified variables of artifact sort, that is it
is of the kind ∃z1∃z2∃z3ψ (it is possible to see this formula by inspecting, e.g., the
SMT-LIB2 file produce by the option -y). One can also deduce that the formula



9. MCMT: a Concrete Model Checker for DAPs 207

has three quantified variables by the fact that 3 is the maximum number following
an underscore occurring in (9.2). More precisely, to get an unsafe state from a
state satisfying the formula ∃z1∃z2∃z3 ψ one first applies transition 5 to z2, z3, then
transition 6 to z2, etc. (when we say that transition 5 is applied to z2, z3, we mean
that transition 5 has two existentially quantified variables x, y in its guard and that
x is mapped to z2 whereas y is mapped to z3). Notation (9.2) is quite informative, but
it is slightly incomplete because it does not mention which case in the case-defined
update functions applies to each variable: displaying this information would cause
a quite complicated outcome, hence, in case of ambiguity, it is necessary to consult
the full information supplied by files produced by running the options -y, -r.

The other messages displayed by mcmt should be clear enough. We only
remark that mcmt provides warnings for the only two cases where un unsafe
outcome might be spurious:

1. because of universal quantifiers in transition guards, hence the unsafety trace
can in principle not good for the intended model (in this case, consistently
with the results of [Alb+12b], mcmt warns that the ‘stopping failure model’
has been adopted);

2. due to incomplete implementation, quantifier elimination of integer data
variables occurring in the guards have been done imprecisely by over-
approximating the set of backward reachable states.

In particular, if neither universally quantified index variables (see Subsection 9.3.6)
nor existentially quantified data variables (see Subsection 9.3.4) occur in the guards,
unsafety traces are not spurious.

In case an unsafe trace is found, this implies that the last displayed formula (9.2)
is consistent with the initial formula. To get an assignment describing a state that
can reach an unsafe configuration, the user may try to exploit the model building
facilities of z3/yices when running the SMT-LIB2 file .smt-log produced by the
option -y. In case a risk of spuriousness has been detected, it is in principle still
possible to check spuriousness of the trace, but currently this can be performed
only manually by the user.

9.5 First Experiments on Concrete Data-Aware
Processes

We base our preliminary experimental evaluation on the already existing benchmark
provided in [LDV17], that samples 33 (32 plus one variant) real-world BPMN
processes published in the official BPM website (http://www.bpmn.org/).
Specifically, we provide a faithful encoding of all these 33 models into the array-
based specifications of U-RASs, by exploiting the syntax of the database-driven
mode of mcmt (from Version 2.8). Moreover, we enrich our experimental set with
an extended version of the running example of this thesis from Chapter 3. Each
example from the benchmark has been checked against 12 conditions, where at

http://www.bpmn.org/
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Example Ar #AC #AV #T #Q #In

E1 Acquisition-following-RFQ n 6 13 28 14 7
E2 Airline-Check-In y 1 33 48 3 5
E3 Amazon-Fulfillment n 2 28 38 17 11
E4 BPI-Web-Registration-with-Moderator n 5 25 22 9 4
E5 BPI-Web-Registration-without-Moderator n 5 25 20 9 4
E6 Bank-Account-Opening y 7 25 16 6 4
E7 Book-Writing-and-Publishing n 4 14 14 10 4
E8 Commercial-Financing n 7 14 34 4 9
E9 Credit-Review-and-Approval n 12 24 23 3 13
E10 Customer-Quotation-Request n 9 11 21 11 8
E11 Employee-Expense-Reimbursement-Alternative-1 y 3 17 21 8 1
E12 Employee-Expense-Reimbursement-Alternative-2 y 3 17 21 8 1
E13 Incident-Management-as-Collaboration n 3 20 20 10 3
E14 Incident-Management-as-Detailed-Collaboration n 3 20 20 10 3
E15 Insurance-Claim-Processing y 4 22 22 13 3
E16 Journal-Review-Process n 6 25 47 19 9
E17 LaserTec-Production-Process y 0 18 13 8 0
E18 Mortgage-Approval n 3 18 21 9 3
E19 New-Car-Sales y 0 23 31 10 0
E20 Order-Fulfillment-and-Procurement n 3 11 24 7 2
E21 Order-Fulfillment y 7 17 27 7 4
E22 Order-Processing-with-Credit-Card-Authorization y 9 18 20 2 7
E23 Order-Processing y 9 14 17 2 7
E24 OrderFulfillment_new y 1 17 15 7 4
E25 Patient-Treatment-Abstract-Process n 6 17 34 14 20
E26 Patient-Treatment-Collaboration-Choreography n 6 17 34 15 20
E27 Patient-Treatment-Collaboration n 6 17 34 15 20
E28 Pizza-Co.-Delivery-Process y 2 32 32 10 2
E29 Property-and-Casualty-Insurance-Claim-Processing n 2 7 15 3 3
E30 Ship-Process-of-a-Hardware-Retailer y 0 28 26 9 0
E31 The-Pizza-Collaboration y 2 32 37 12 2
E32 Travel-Booking-with-Event-Sub-processes y 14 32 51 9 14
E33 Travel-Booking y 14 32 43 8 10
E+ JobHiring y 9 18 15 7 6

Table 9.1: Summary of the tested examples

least one is safe and one is unsafe; our running example has been checked against
33 conditions. Overall, we ran mcmt over 429 specification files.

Experiments were performed on a machine with macOS High Sierra 10.13.3,
2.3 GHz Intel Core i5 and 8 GB RAM. The full benchmark set is available on
the following website: https://github.com/AlessandroGianola/

SMT-based-Data-Aware-Processes-Verification/tree/

RAS-benchmark-in-MCMT. A selected subset of this benchmark is
also available, as part of the last distribution 2.8 of mcmt: http:

//users.mat.unimi.it/users/ghilardi/mcmt/ (see the subdirectory
/examples/dbdriven of the distribution). For the information on how to use
the capabilities of the new version of mcmt (by activating the “db_driven” mode),
how to encode RASs in mcmt specifications and how to produce user-defined
examples in the database driven framework, see the previous sections of this

https://github.com/AlessandroGianola/SMT-based-Data-Aware-Processes-Verification/tree/RAS-benchmark-in-MCMT
https://github.com/AlessandroGianola/SMT-based-Data-Aware-Processes-Verification/tree/RAS-benchmark-in-MCMT
https://github.com/AlessandroGianola/SMT-based-Data-Aware-Processes-Verification/tree/RAS-benchmark-in-MCMT
http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
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Ex #U #S MeanT MaxT StDvT Avg#(N) AvgD Avg#(calls)

E01 9 3 0.82 1.28 (U) 0.36 60.1 8.25 3398.2
E02 6 6 0.31 0.37 (S) 0.04 6.7 4.33 4011.4
E03 6 6 0.74 2.49 (S) 0.69 24.4 6.75 4301.8
E04 5 7 0.32 0.64 (U) 0.18 15.0 7.67 1899.7
E05 5 7 0.23 0.51 (U) 0.14 10.9 6.17 1656.8
E06 5 7 0.17 0.34 (U) 0.08 14.6 6.58 1496.4
E07 10 2 0.18 0.62 (U) 0.16 21.8 3.75 1126.1
E08 6 6 0.65 2.50 (S) 0.67 34.2 8.75 3036.4
E09 9 3 19.76 171.63 (S) 48.42 175.8 12.00 20302.4
E10 9 3 0.22 0.46 (S) 0.14 15.1 4.75 1550.3
E11 7 5 0.14 0.37 (S) 0.10 17.3 7.25 1305.7
E12 7 5 0.15 0.37 (S) 0.10 16.4 6.92 1292.6
E13 8 4 0.65 2.39 (U) 0.80 47.4 7.67 2764.8
E14 8 4 0.62 2.24 (U) 0.77 46.5 7.67 2724.0
E15 7 5 0.37 0.76 (U) 0.21 32.3 9.5 2283.4
E16 8 4 0.96 5.47 (U) 1.43 38.3 11.0 5151.8
E17 7 5 0.08 0.13 (U) 0.02 11.3 8.67 768.5
E18 6 6 0.11 0.19 (U) 0.04 9.0 5.33 1212.6
E19 6 6 0.37 0.74 (U) 0.15 31.3 8.17 2416.2
E20 6 6 0.11 0.17 (U) 0.03 10.9 5.5 1026.5
E21 7 5 0.37 1.22 (S) 0.29 30.8 13.25 2352.8
E22 9 3 6.71 43.76 (U) 14.10 134.3 8.16 8355.4
E23 8 4 0.99 3.73 (S) 1.48 35.3 7.09 2995.9
E24 7 5 0.08 0.11 (S) 0.02 9.5 5.42 942.2
E25 6 6 4.52 24.74 (S) 9.43 27.1 4.83 7486.7
E26 6 6 4.97 17.79 (S) 7.55 28.2 4.92 4811.1
E27 7 5 4.59 20.81 (S) 7.42 26.9 4.91 4633.7
E28 7 5 0.22 0.45 (U) 0.08 9.1 6.17 2699.0
E29 6 6 0.08 0.42 (S) 0.11 11.3 5.42 648.8
E30 6 6 0.31 0.79 (U) 0.20 26.4 5.42 2316.2
E31 8 4 0.35 0.68 (U) 0.18 17.9 8.58 3325.0
E32 9 3 2.48 8.49 (U) 2.41 97.3 17.75 9231.3
E33 9 3 1.27 4.24 (S) 1.16 66.7 16.83 6637.8
E+ 22 11 7.39 98.27 (S) 23.55 75.7 9.15 5612.5

Table 9.2: Experimental results for safety properties

chapter; for more details on mcmt in general, its use and heuristics also in different
contexts, see the user manual, also included in the distribution.

We provide two tables describing the benchmark run in mcmt: Table 9.1 lists
the name of tested examples and gives relevant information on the size of the
input specification files, whereas Table 9.2 summarizes the experimental results
obtained running mcmt over those files.

In Table 9.1:
- the column#AC represents, for each example, the number of artifact components;
- the column #AV represents, for each example, the number of artifact variables;
- the column #T represents, for each example, the number of transitions;
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- the column #Q represents, for each example, the number of transitions containing
quantified data variables;

- the column #In represents, for each example, the number of transitions
manipulating at least one index;

- finally, in column #(Ar) we write “y” if the corresponding example contains
arithmetic operations, and “n” otherwise.

All the verified examples include transitions with quantified “data” variables (as
one can see from column #Q), and rely on and the algebraic framework of DB
theories introduced in the Section 3.1.

To stress test our encoding, we manually created a few formulae to be verified
that have a clear semantic interpretation in terms of the described configurations.
We chose not to generate them automatically from syntactic templates as done in
[LDV17]: we preferred to check meaningful properties so that one can check that
the outcome returned by the tool corresponds to our expectation. Each example
is then endowed with one of these formulae, which is declared as unsafe property
in a mcmt specification file: in the provided benchmark set at the link above, file
EXPY .txt corresponds to the example EX (withX := 1, ..., 33 orX := +) verified
against property PY (with Y := {01, 02, ..., 11, 12} if X := {01, 02, ..., 32, 33}, or
Y := {01, 02, ..., 32, 33} if X := +); at the same link, the time-log.txt file
containing the list of the execution times of all the previous files EXPY .txt is also
available. The verification outcome that mcmt can have is of the two following types:
SAFE and UNSAFE. The mcmt tool returns SAFE, if the undesirable property it was
asked to verify represents a configuration that the system cannot reach. The result
is UNSAFE if there exists a path of the system execution that reaches “bad” states.

In Table 9.2, we report several measures for each example: when we say that a
measure is “an average for that example” we mean that it is obtained by computing
the arithmetic mean of that measure over the properties tested for the same
example. We now explain the content of Table 9.2.
- The column #U shows the number of UNSAFE outcomes among the tested
properties for each example.

- Analogously, the column #S shows the number of SAFE outcomes.
- The column MeanT is the arithmetic mean over the mcmt execution times (in
seconds) of the tested properties for each example.

- Column MaxT reports the maximum execution time (in seconds) for the tested
properties per example (in brackets it is also reported if the maximum corresponds
to a SAFE or UNSAFE outcome).

- Column StDvT shows the standard deviation of the execution times (in seconds)
over the sample of the tested properties for each example.

- The last three measures shown in Table 9.2 are Avg#(N), AvgD and
Avg#(calls) that respectively define the average number of nodes, the average
depth of the tree used for the backward reachability procedure adopted by mcmt,
and the average number of the SMT solver calls performed by mcmt for that
example.
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Indeed, mcmt computes the iterated preimages of the formula describing the unsafe
states along the various transitions. Such a computation produces a tree, whose
nodes are labelled by formulae describing sets of states that can reach an unsafe
state and whose arcs are labelled by a transition. In other words, an arc t : φ→ ψ

means that φ is equal to Pre(t, ψ).
We notice from Table 9.2 that the means of the execution times are relatively

small: more than 76% of the examples has a timing mean that is less than one
second, and more than 52% of the example have maximum execution time less
than one second. As one can see from the time-log.txt file, overall mcmt
terminates in less than one second for 85.5% of the tested files (367 out of 429).
We also remark that in most cases the standard deviation is very low (in more
than 58% of the times it is less than 0.5, and in more than 70% of the times it
is less than 1), which means that the mean is a good indicator of the behavior of
the tested files for each example. Moreover, notice that the maximum execution
time per file in the benchmark is for testing file E09P06.txt, which took mcmt
171.63 seconds (less than 3 minutes). As shown in time-log.txt, there are
some other outliers: for example, 28.42 seconds for file E09P04.txt, 43.76 and
28.23 seconds for files E22P10.txt and E22P12.txt resp., 24.74 and 24.63 for
files E25P05.txt and E25P10.txt resp., 41.55, 90.36 and 98.27 seconds for files
E+P14.txt, E+P15.txt and E+P17.txt resp.

One can see, for example, that the job hiring RAS has been proved by mcmt
to be SAFE w.r.t. the property defined in Example 4.3.8. The details about the
successfully completed verification task are the following: the tool constructed a
tree with 3 nodes and a depth of 3 with 1238 calls to the SMT solver, and returned
SAFE in 0.16 seconds. For the same job hiring RAS, if we slightly modify the safe
condition discussed in Example 4.3.8 by removing, for instance, the check that a
selected applicant is not a winning one, we obtain a description (see below) of a
configuration in which it is still the case that an applicant could win:

∃i:appIndex
(
pState = notified ∧ applicant[i] 6= undef ∧ appResult[i] 6= loser

)
In this case, the job hiring process analyzed against the devised property is
evaluated as UNSAFE by the tool in 0.87 seconds (this property corresponds
to file E+P03.txt). When checking safety properties, mcmt also prints the
sequence of transitions of an unsafe path of a given example in case the verification
result is UNSAFE.

Since mcmt performs safety verification parameterized on the read-only DB, the
result is independent on the size of specific DB instances. Moreover, mcmt can in
principle handle unbounded DB schemas and unboundedly many DB constants: we
decided not to explicitly report in Table 9.1 the size of DB schemas since we noticed
it does not affect the performances as much as the number of artifact components,
of transitions and of transitions containing quantified index variables. We leave for
future work a systematic experimental evaluation of those preliminary observations.
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To conclude, we would like to point out that contrasting the high number of SMT
solver calls in #(SMT-calls) against relatively low execution time demonstrates
that mcmt could be considered as a promising tool supporting the presented
line of research. This is due to the following two reasons. On the one hand,
the SMT technology underlying solvers like Yices [DDM06] is quite mature
and impressively well-performing. On the other hand, the backward reachability
algorithm generates proof obligations which are relatively easy to be analyzed
as (un)satisfiable by the solver.

A thorough comparison with Verifas [LDV17] is at the moment rather
problematic, for various reasons, due for instance to the different specification
languages and to the different types of theoretical frameworks adopted by two tools.
In fact, the two systems tackle incomparable verification problems: on the one
hand, we deal with safety problems, whereas Verifas handles properties expressed
in a variant of LTL-FO. On the other hand, we tackle features not available in
Verifas, like bulk updates and comparisons between artifact tuples. The reason
why we chose to manually encode the same BPMN benchmark attacked by Verifas
was to demonstrate the feasibility of our approach on concrete, real-world-inspired
examples. Although the encoding of the examples is faithfully in line with the
semantics of the systems verified by Verifas, the different kind of involved logics for
expressing the properties prevented us from checking these systems against the same
properties. Nevertheless, while the properties verified by Verifas are synthetically
generated (and, hence, in many cases they are meaningless), every safety condition
that we checked in mcmt was manually created after a careful analysis of the
semantical behavior of every example. We leave this comparison for future, more
experimentally-oriented, work. The comparison might be interesting because the two
tools apply quite different technologies (Verifas is based on Vector Addition System
with States (VASS) encoding, whereas mcmt follows a purely declarative paradigm).
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In this chapter we provide a brief overview of the fundamental notions from the
BPM literature and from Colored Petri nets that are useful for the following chapters.

10.1 Business Process Management
We recall that BPM can be seen as the research field that investigates methods
and techniques for describing, managing and improving business processes within
companies and organizations, from both the theoretical and the practical points
of view, so as to ensure that the activities are performed in the best way possible
and the desired objectives are achieved. Hence, the first concept that is worth
clarifying is the one of business process.

Business processes can be seen as “chains of events, activities and decisions”
[Dum+18], i.e., a collection of instantaneous events that can have a concrete effect
on the work in an organization, of activities performed by some actors within a
business entity (e.g., a company), and of decision points involving these actors
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and possible objects/artifacts that these actors deal with during their work. These
decision points usually generate several branches in the evolution of the process and
lead to different outcomes: the outcomes are not always the same, since some of
them fulfil the intended requirements of the process and reach the desired goals,
whereas some of them may result in an unwanted behavior that violates (some of)
the predetermined objectives defined by the company.

The concept of business process is at the same time formally studied by BPM
researchers and concretely employed by BPM practitioners in the industry: this
is possible thanks to the existence of standard modeling languages for business
processes, such as in particular BPMN (Business Process Model and Notation)
[Bpm]. This language gives the possibility to experts from different fields (managers,
IT specialists, stakeholders etc.) to share their knowledge and comprehension
about processes using a common, non-ambiguous formalism. Providing such a
common interface for reasoning about business processes helps the different involved
specialists to understand better the complexity of the process and to discover
in time and possibly prevent critical issues that could affect the performance
of the organization.

We now review the main ingredients for modeling business processes via the
BPMN language. We consider here the latest version of BPMN, which is BPMN
2.0. This version was released as a standard by the Object Management Group
(OMG) in 2011.

BPMN Basic Blocks and Concepts

The basic components of a business process are activities and events. Activities
should be thought as units of work that have a duration and are performed by human
individuals or automated actors in the organization (e.g., “candidate evaluation” in
a job hiring process): in case the activity can be considered as atomic (i.e., it is not
decomposed into multiple sub-activities), it is called task. In contrast, events should
be thought as circumstances occurring instantaneously that affect the evolution of the
process (e.g., an incoming message/order from a different department of a company).

Activities (and, in particular tasks) are depicted with rounded rectangles
(Figure 10.1a), whereas events with circles (Figure 10.1b).
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make it possible for the task to be executed again later, if the process control-flow dic-
tates so).

The lifecycle of a nonatomic task diverges in two crucial respects. First of all,
upon firing it moves from enabled to active, and later on nondeterministically from
active to compl (thus having a duration). The precondition of its update specification
is checked and bound to one of the available answers when the task becomes active,
while the corresponding effect is applied when the task becomes compl. Since these
two transitions occur asynchronously, to avoid the aforementioned transactional issues
we assume that the effect operates, in this context, only on case variables (and not on
the repository).

2.3 Process Schema

A process schema consists of a block-structured BPMN diagram, enriched with con-
ditions and update effects expressed over a given data schema, according to what de-
scribed in the previous sections. As for the control flow, we consider a wide range of
block-structured patterns compliant with the standard. We focus on private BPMN pro-
cesses, thereby handling incoming messages in a pure nondeterministic way. So we do
for timer events, nondeterministically accounting for their expiration without entering
into their metric temporal semantics. Focusing on block-structured components helps us
in obtaining a direct, execution semantics, and a consequent modular and clean transla-
tion of various BPMN constructs (including boundary events and exception handling).
However, it is important to stress that our approach would seamlessly work also for
non-structured processes where each case introduces boundedly many tokens.

As usual, blocks are recursively decomposed into sub-blocks, the leaves being task
or empty blocks. Depending on its type, a block may come with one or more nested
blocks, and be associated with other elements, such as conditions, types of the involved
events, and the like. We consider a wide range of blocks, covering basic (cf. Figure 1),
flow (cf. Figure 2), and exception handling (cf. Figure 3) patterns. Figure 4 gives an idea
about what is covered by our approach. With these blocks at hand, we finally obtain the
full definition of a DAB.
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(b) Intermediate event
block.

Figure 10.1: Tasks and events

Usually, activities have a duration and during their evolution they pass though
different states that determine their lifecycle: when the activity is not currently
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executed but can be potentially started, we say that it is in the idle state; when
the execution activity is triggered by some other block in the process flow, we say
that it is in the enabled state; during its execution, we say it is in the active state;
finally, when the execution of the activity terminates, it ends in the completed
state. This is a simplified version of what is called the “activity lifecycle”. Since
events do not have a duration but occur instantaneously, their lifecycle can be in
the same state as activities, apart from the active state.

In the following, we restrict our attention to block-structured BPMN. As it will
be discussed later, in this thesis we only focus on this fragment of BPMN since
it allows us to define a direct execution semantics also for advanced constructs
and to exploit this upon verifying the obtained models: in particular, this choice
makes possible to implement a parser of the resulting BPMN diagram that can be
automatically translated in the specification language of mcmt (see Chapter 9).
We will comment in more detail the reasons behind this choice in Chapter 11.

Events and activities do not usually happen alone, and usually are not completely
disconnected. In contrast, events and activities within the same business process
are usually strictly interconnected and causally related and/or temporally ordered:
that is why the notion of “sequence flow” of events/activities is needed in order
to faithfully represent a concrete process. A sequence of two activities B1 and
B2 is simply a more complex process where B1 is executed first and then, when
B1 is completed, the activity B2 is enabled and finally performed. To connect
the blocks B1 and B2 so as to create a sequence, BPMN supports a third basic
concept, i.e. arcs. Arcs are depicted with arrows with a full arrow-head that
connect the two blocks B1 and B2.

Block Attributes

sequence B1 B2 (1) Arbitrary nested blocks B1 and B2

possible
completion X

j1

e
j2
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loop X

B1

B2

X
j1

j1

(1) Conditions j1 and j2
(2) Arbitrary nested blocks B1 and B2

event-driven
choice

E1

E2

B1

B2

X
(1) Cath event nested blocks E1 and E2
(2) Arbitrary nested blocks B1 and B2

Fig. 2: Flow DAB blocks; for simplicity, we consider only two nested blocks, but mul-
tiple nested blocks can be seamlessly handled.

Definition 9. A DAB M is a pair hD,Pi where D is a data schema, and P is a root
process block such that all conditions and update effects attached to P and its descen-
dant blocks are expressed over D. /

Example 5. The full hiring job process is shown in Figure 4, using the update effects
described in Examples 3 and 4. Intuitively, the process works as follows. A case is
created when a job is posted, and enters into a looping subprocess where it expects
candidates to apply. Specifically, the case waits for an incoming application, or for an
external message signalling that the hiring has to be stopped (e.g., because too much
time has passed from the posting). Whenever an application is received, the CV of the
candidate is evaluated, with two possible outcomes. The first outcome indicates that
the candidate directly qualifies for the position, hence no further applications should
be considered. In this case, the process continues by declaring the candidate as winner,
and making an offer to her. The second outcome of the CV evaluation is instead that
the candidate does not directly qualify. A more detailed evaluation is then carried out,
assigning a score to the application and storing the outcome into the process repository,
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In BPMN, every process is assumed to be triggered by some event (e.g., by the
opening of a job position) and to be ended by some other (e.g., by the fulfillment
of the job hiring process): the former is called “start event” and the latter “end
event”. Start and end events play a crucial role in modeling processes: the start
event indicates when instances of the process start whereas the end event indicates
when instances complete. Start (resp., end) events and the blocks that follow (resp.,
precede) them are interconnected by arcs. These two events are depicted with two
slightly different symbols: as it can be seen in the following picture, which shows
a process block, start events are represented by circles with a thin border, while
end events are represented by circles with a thick border.
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cesses, thereby handling incoming messages in a pure nondeterministic way. So we do
for timer events, nondeterministically accounting for their expiration without entering
into their metric temporal semantics. Focusing on block-structured components helps us
in obtaining a direct, execution semantics, and a consequent modular and clean transla-
tion of various BPMN constructs (including boundary events and exception handling).
However, it is important to stress that our approach would seamlessly work also for
non-structured processes where each case introduces boundedly many tokens.

As usual, blocks are recursively decomposed into sub-blocks, the leaves being task
or empty blocks. Depending on its type, a block may come with one or more nested
blocks, and be associated with other elements, such as conditions, types of the involved
events, and the like. We consider a wide range of blocks, covering basic (cf. Figure 1),
flow (cf. Figure 2), and exception handling (cf. Figure 3) patterns. Figure 4 gives an idea
about what is covered by our approach. With these blocks at hand, we finally obtain the
full definition of a DAB.
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Process blocks can be used to formalize a (sub-)process that is part of a bigger
(super-)process: in this case, the sub-process as a whole can be thought as a single
macro-activity of its parent process. Sometimes, for the sake of simplicity, BPMN
users prefer avoiding the representation of the explicit content of sub-processes, e.g.,
in case the information about their internal structure is not relevant for performing
the tasks of the parent process. Subprocesses that hide their internal steps are
called “collapsed subprocesses”, and are depicted as follows:
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In BPMN, it is customary to give names to activities and events: the reader that
is interested in the nomenclature conventions should see Chapter 3 of [Dum+18].
Events that may occur during the evolution of the process that are neither start
or end events are called “’intermediate” events.

Process Cases and Execution Semantics: an Informal view

As already noticed, start events trigger the creation of instances of the process: for
example, in the case of a job hiring process, a new instance is generated whenever a
new job is posted and becomes open for applications. For every business process
of interest, contemporary organizations execute in parallel a variety of different
instances , usually called cases, which are all independent of each other.

Concerning the execution semantics, BPMN models are similar in spirit to
Petri nets (see Section 10.2 for more details on this). The creation of every case
of the process is associated with the generation of a new token which should be
intended as an implicit identifier of the running case in consideration: this identifier
is useful to represent the state of each case in every moment of the execution, and
to track its progression along the workflow of the process. As it happens for Petri
nets, tokens are generated in correspondence of the start event, and flow through
the process until they reach an end event, where they are consumed in order to
terminate the corresponding case. The nature of tokens’ flow is determined by the
characteristics of the process, which, in turn, depends on the specific features of
its building blocks. For example, if the token identifying the current case reaches
a sequence block connecting two sub-blocks B1 and B2, its behavior can be easily
described. It first enters into block B1 as soon as this block is enabled, it passes
through it during B1 execution and exits it when B1 becomes completed. At this
point, the token flows through the arc connecting B1 and B2 and, as soon as B2
is enabled, it is taken by the second block. The token remains in B2 for all the
duration of its execution, until B2 completes its activity. Finally, the token exits
the sequence block. In general, tokens follow the flow induced by the arcs in the
BPMN diagram. We will see in the next paragraph that BPMN diagram can contain
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blocks that are more complex than basic ones, and we will informally describe
the behavior of tokens when flowing through them.

Complex BPMN blocks

Sequence block is not the only way for composing activities and events: indeed,
activities are not forced to be always executed sequentially, i.e., one after the other.
For example, one may want to represent the case where two activities are performed
in parallel. To model patterns that are different from the sequential composition of
blocks, it is necessary to introduce gateways. Gateways are used to manage and
guide the flow of tokens through the process: indeed, they formalize both the case
when the token incoming to the gate is split into more than one tokens that are sent
to different branches of the process executed in parallel, and the case when tokens are
merged together because different parallel executions converge. In the first case, they
are called split gateways, which describe a point where the the process flow (with a
single incoming arc) is split into branches (i.e., into more than one outgoing arcs);
in the second case, they are called join gateways, describing a point in the diagram
where the process flow converges and different branches of the process (i.e., more
than one incoming arc) are merged into a single branch (i.e., into a single outgoing
arc). In BPMN, split and join gateways are both represented using diamonds.

We now describe some of the most important blocks that involve gateways
and briefly present their token semantics.

In some concrete cases there are activities that are independent of each other
and can be run in parallel, i.e. they can be executed at the same time. In these
cases, we employ the following parallel block: an AND-split is used to model the
creation of of two (or more) branches that are run in parallel (with sub-blocks B1
and B2), and an AND-join is used to synchronize again these created branches
into a single one when their executions is completed.
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Fig. 2: Flow DAB blocks; for simplicity, we consider only two nested blocks, but mul-
tiple nested blocks can be seamlessly handled.

Definition 9. A DAB M is a pair hD,Pi where D is a data schema, and P is a root
process block such that all conditions and update effects attached to P and its descen-
dant blocks are expressed over D. /

Example 5. The full hiring job process is shown in Figure 4, using the update effects
described in Examples 3 and 4. Intuitively, the process works as follows. A case is
created when a job is posted, and enters into a looping subprocess where it expects
candidates to apply. Specifically, the case waits for an incoming application, or for an
external message signalling that the hiring has to be stopped (e.g., because too much
time has passed from the posting). Whenever an application is received, the CV of the
candidate is evaluated, with two possible outcomes. The first outcome indicates that
the candidate directly qualifies for the position, hence no further applications should
be considered. In this case, the process continues by declaring the candidate as winner,
and making an offer to her. The second outcome of the CV evaluation is instead that
the candidate does not directly qualify. A more detailed evaluation is then carried out,
assigning a score to the application and storing the outcome into the process repository,

11

We notice that an AND-split receiving in input one token returns as output as many
tokens as the number of branches created, and each of these token flows in parallel
through the corresponding branch; similarly, an AND-join receives in input a bunch
of tokens coming from the different branches and merges them into a unique token
that is then released to the arc departing from the AND-join.

In other cases, there are activities that are alternative to each other and, hence,
are mutually exclusive, i.e. only one of the them can be executed. For formalizing
such cases, BPMN gives us the possibility of using the exclusive (XOR) block: this
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block consists of a XOR-split to branch the execution into two (or more) different
mutually exclusive alternatives, of two (or more) sub-blocks B1, B2 etc. that are
alternatively run in the corresponding branches, and of a XOR-join that merge the
alternative branches. The exclusive block is depicted as follows:
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Definition 9. A DAB M is a pair hD,Pi where D is a data schema, and P is a root
process block such that all conditions and update effects attached to P and its descen-
dant blocks are expressed over D. /

Example 5. The full hiring job process is shown in Figure 4, using the update effects
described in Examples 3 and 4. Intuitively, the process works as follows. A case is
created when a job is posted, and enters into a looping subprocess where it expects
candidates to apply. Specifically, the case waits for an incoming application, or for an
external message signalling that the hiring has to be stopped (e.g., because too much
time has passed from the posting). Whenever an application is received, the CV of the
candidate is evaluated, with two possible outcomes. The first outcome indicates that
the candidate directly qualifies for the position, hence no further applications should
be considered. In this case, the process continues by declaring the candidate as winner,
and making an offer to her. The second outcome of the CV evaluation is instead that
the candidate does not directly qualify. A more detailed evaluation is then carried out,
assigning a score to the application and storing the outcome into the process repository,
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Notice that the token that passes through a XOR-split is then sent to one (and
only one) alternative branch, because only one branch is executed. When the
token reaches the XOR-join, the block is completed and the token is passed though
an outgoing arc to the subsequent block.

If the choice on which of the alternative branches to execute is determined
by a condition ϕ, the exclusive block is called exclusive choice (XOR) block (see
the following picture): in this case, if the condition ϕ on the first outgoing arc is
satisfied, then the first branch is taken, otherwise the second branch is taken.
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Definition 9. A DAB M is a pair hD,Pi where D is a data schema, and P is a root
process block such that all conditions and update effects attached to P and its descen-
dant blocks are expressed over D. /

Example 5. The full hiring job process is shown in Figure 4, using the update effects
described in Examples 3 and 4. Intuitively, the process works as follows. A case is
created when a job is posted, and enters into a looping subprocess where it expects
candidates to apply. Specifically, the case waits for an incoming application, or for an
external message signalling that the hiring has to be stopped (e.g., because too much
time has passed from the posting). Whenever an application is received, the CV of the
candidate is evaluated, with two possible outcomes. The first outcome indicates that
the candidate directly qualifies for the position, hence no further applications should
be considered. In this case, the process continues by declaring the candidate as winner,
and making an offer to her. The second outcome of the CV evaluation is instead that
the candidate does not directly qualify. A more detailed evaluation is then carried out,
assigning a score to the application and storing the outcome into the process repository,
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Notice that the token semantics for this block is the same as the one of the exclusive-
block to the previous one: the only difference is that the choice of the branch is
guided by the satisfaction of the condition ϕ.

In yet other cases, there is an alternative choice of activities to perform, but
this choice is not exclusive and different alternatives are possible at the same time:
sometimes only one activity in the alternative is executed, sometimes more than
one are chosen and executed. This situation is formalized using the following block,
called inclusive choice (OR) block: similarly to the exclusive choice block, we use
an OR-split to branch the execution in different branches containing the sub-blocks
Bi (i = 1, 2, ...), each of which is chosen upon the satisfaction of a condition ϕi;
we use a OR-join to merge all the branches.
The reader should be careful when considering the token semantics of this case.
Indeed, as in the exclusive choice case, when a token reaches the OR-split, one
token is returned as output in correspondence of the branch satisfying its condition
ϕ: however, for the inclusive choice block there could be more than one ϕi that
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Definition 9. A DAB M is a pair hD,Pi where D is a data schema, and P is a root
process block such that all conditions and update effects attached to P and its descen-
dant blocks are expressed over D. /

Example 5. The full hiring job process is shown in Figure 4, using the update effects
described in Examples 3 and 4. Intuitively, the process works as follows. A case is
created when a job is posted, and enters into a looping subprocess where it expects
candidates to apply. Specifically, the case waits for an incoming application, or for an
external message signalling that the hiring has to be stopped (e.g., because too much
time has passed from the posting). Whenever an application is received, the CV of the
candidate is evaluated, with two possible outcomes. The first outcome indicates that
the candidate directly qualifies for the position, hence no further applications should
be considered. In this case, the process continues by declaring the candidate as winner,
and making an offer to her. The second outcome of the CV evaluation is instead that
the candidate does not directly qualify. A more detailed evaluation is then carried out,
assigning a score to the application and storing the outcome into the process repository,
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are satisfied, so more than one branch that are executable. If this is the case, the
OR-split generates as many tokens as the number of branches whose conditions are
satisfied. These tokens flow in parallel through the enabled branches. The inclusive
choice block is completed when all the enabled branches terminate their execution,
i.e., when all the created tokens reach the OR-join gateway.

If the decision to take on which branch to follow in an exclusive choice block is
determined not by an activity, but by the first among different potentially incoming
events, the XOR-split gateway is represented in a different way:
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Definition 9. A DAB M is a pair hD,Pi where D is a data schema, and P is a root
process block such that all conditions and update effects attached to P and its descen-
dant blocks are expressed over D. /

Example 5. The full hiring job process is shown in Figure 4, using the update effects
described in Examples 3 and 4. Intuitively, the process works as follows. A case is
created when a job is posted, and enters into a looping subprocess where it expects
candidates to apply. Specifically, the case waits for an incoming application, or for an
external message signalling that the hiring has to be stopped (e.g., because too much
time has passed from the posting). Whenever an application is received, the CV of the
candidate is evaluated, with two possible outcomes. The first outcome indicates that
the candidate directly qualifies for the position, hence no further applications should
be considered. In this case, the process continues by declaring the candidate as winner,
and making an offer to her. The second outcome of the CV evaluation is instead that
the candidate does not directly qualify. A more detailed evaluation is then carried out,
assigning a score to the application and storing the outcome into the process repository,
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We call this block event-driven block. Here, E1 and E2 must be intermediate
events.

Another essential block is given by the loop block: it is used to formalize the
repetition of some activities (the block B1), called repetition pattern. The main
characteristic of this block is that the last of its activities needs to be a decision
activity, i.e., an activity where a decision is made: in fact, based on this decision,
either the repetition pattern is run again (after the execution of block B2) or the
loop block becomes completed. In the latter case the execution continues following
the subsequent blocks in the rest of the process flow. Usually, the decision depends
upon the satisfaction of a condition ϕ. The following picture represents a common
way for formalizing a loop block in BPMN:
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Definition 9. A DAB M is a pair hD,Pi where D is a data schema, and P is a root
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dant blocks are expressed over D. /

Example 5. The full hiring job process is shown in Figure 4, using the update effects
described in Examples 3 and 4. Intuitively, the process works as follows. A case is
created when a job is posted, and enters into a looping subprocess where it expects
candidates to apply. Specifically, the case waits for an incoming application, or for an
external message signalling that the hiring has to be stopped (e.g., because too much
time has passed from the posting). Whenever an application is received, the CV of the
candidate is evaluated, with two possible outcomes. The first outcome indicates that
the candidate directly qualifies for the position, hence no further applications should
be considered. In this case, the process continues by declaring the candidate as winner,
and making an offer to her. The second outcome of the CV evaluation is instead that
the candidate does not directly qualify. A more detailed evaluation is then carried out,
assigning a score to the application and storing the outcome into the process repository,
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The token semantics in this case should be clear enough: the token first enters the
loop and flows through the repetition pattern B1, and when B1 is completed it
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enters the XOR-split gateway. This gateway splits the execution into two branches.
In fact, each branch is chosen depending on the outcome of the decision made
in B1, and the possible outcomes are two: if ϕ is satisfied, then the token exits
the loop block, otherwise it remains in the loop, flows through the downward
branch (and B2 is executed) and finally reaches the XOR-join gateway on the
left. In this way, the token is ready to move again through the repetition pattern
for a new iteration of the loop.

Sometimes, during the execution of an activity, some exception/error may occur,
making the process diverge from the expected behavior: in this case, we would like
to model a (possible) interruption of the “regular” execution of the process when
such an exception happens, and to indicate that the process should instead follow
an alternative branch for handling the occurred exception. In this respect, we notice
that intermediate events can also been attached to BPMN activities. Their meaning
in that case is to indicate an exception flow that is triggered whenever the event is
delivered to the process instance during the execution of the corresponding activities.
There are in general two modes for the exception flow: the one interrupting the
activities and the one non-interrupting the activities, as discussed below. In BPMN,
this is done with the following three blocks (the first two are interrupting, the
third one is non-interrupting).

The first one models backward exception, i.e. a situation when, during the
execution of a sub-block A, and error e occurs and then the downward branch is
activated, inducing the execution of the “exception handler” sub-block B. After the
exception has been handled, the sub-block A is executed again. This block is
represented as follows:
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Fig. 3: DAB exception handling blocks; for simplicity, we show a single boundary
event, but multiple boundary events and their corresponding handlers can be seamlessly
handled.

then waiting for additional applications to come. When the application management
subprocess is stopped (which we model through an error so as to test various types of
blocks in the experiments reported in Section 3.3), the applications present in the repos-
itory are all processed in parallel, declaring which candidates are eligible and which not
depending on their scores. Among the eligible ones, a winner is then selected, making
an offer to her. We implicitly assume here that at least one applicant is eligible, but we
can easily extend the DAB to account also for the case where no application is eligible./

As customary, each block has a lifecycle that indicates the current state of the block,
and how the state may evolve depending on the specific semantics of the block, and the
evolution of its inner blocks. In Section 2.2 we have already characterized the lifecycle
of tasks and catch events. For the other blocks, we continue to use the standard states
idle, enabled, active and compl. We use the very same rules of execution described
in the BPMN standard to regulate the progression of blocks through such states, taking
advantage from the fact that, being the process block-structured, only one instance of
a block can be enabled/active at a given time for a given case. For example, the life-
cycle of a sequence block S with nested blocks B1 and B2 can be described as follows
(considering that the transitions of S from idle to enabled and from compl back to
idle are inductively regulated by its parent block): (i) if S is enabled, then it becomes
active, simultaneously inducing a transition of B1 from idle to enabled; (ii) if B1 is
compl, then it becomes idle, simultaneously inducing a transition of B2 from idle to
enabled; (iii) if B2 is compl, then it becomes idle, simultaneously inducing S to move
from active to compl. The lifecycle of other block types can be defined analogously.

2.4 Execution Semantics

We intuitively describe the execution semantics of a case over DAB M = hD,Pi, using
the update/task logic and progression rules of blocks as a basis. Upon execution, each
state of M is characterized by an M-snapshot, in turn constituted by a data snapshot
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The token semantics in this case is particularly interesting: while the tokens
identifying the current case are taken by A (because A is active), an error event may
happen, which causes all the tokens at the moment present in A to be “destroyed”
(because all the sub-activities of A must be immediately interrupted). At the same, a
new token identifying the current case is created in the exception handler block and
moved through the sub-block B. When b terminates its activity, the token is moved to
the left XOR-join gateway, ready to repeat the activity A. The fact that the token is
fed back to initial activity A explains why this block is called “backward exception”.

The second exception block is called forward-exception (see the following
picture).

It models a situation that is symmetric to the previous one, since instead of
formalizing a “backward” exception, it formalizes a “forward” exception: when the
exception happens in an activity A, it is handled without going back to A. More



10. Business Process Management and Petri Nets: Preliminaries 223

Block Attributes

backward
exception X A

e

B

(1) Type of boundary event e (error,msg,timer)
(2) Subprocess nested block A
(3) Arbitrary nested block B

forward
exception A B1

B2

X
e

(1) Type of boundary event e (error,msg,timer)
(2) Subprocess nested block A
(3) Arbitrary nested blocks B1 and B2

forward
non-interrupting
exception

A B1

B2

O
e

(1) Type of boundary event e (msg,timer)
(2) Subprocess nested block A
(3) Arbitrary nested blocks B1 and B2

Fig. 3: DAB exception handling blocks; for simplicity, we show a single boundary
event, but multiple boundary events and their corresponding handlers can be seamlessly
handled.
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subprocess is stopped (which we model through an error so as to test various types of
blocks in the experiments reported in Section 3.3), the applications present in the repos-
itory are all processed in parallel, declaring which candidates are eligible and which not
depending on their scores. Among the eligible ones, a winner is then selected, making
an offer to her. We implicitly assume here that at least one applicant is eligible, but we
can easily extend the DAB to account also for the case where no application is eligible./

As customary, each block has a lifecycle that indicates the current state of the block,
and how the state may evolve depending on the specific semantics of the block, and the
evolution of its inner blocks. In Section 2.2 we have already characterized the lifecycle
of tasks and catch events. For the other blocks, we continue to use the standard states
idle, enabled, active and compl. We use the very same rules of execution described
in the BPMN standard to regulate the progression of blocks through such states, taking
advantage from the fact that, being the process block-structured, only one instance of
a block can be enabled/active at a given time for a given case. For example, the life-
cycle of a sequence block S with nested blocks B1 and B2 can be described as follows
(considering that the transitions of S from idle to enabled and from compl back to
idle are inductively regulated by its parent block): (i) if S is enabled, then it becomes
active, simultaneously inducing a transition of B1 from idle to enabled; (ii) if B1 is
compl, then it becomes idle, simultaneously inducing a transition of B2 from idle to
enabled; (iii) if B2 is compl, then it becomes idle, simultaneously inducing S to move
from active to compl. The lifecycle of other block types can be defined analogously.

2.4 Execution Semantics

We intuitively describe the execution semantics of a case over DAB M = hD,Pi, using
the update/task logic and progression rules of blocks as a basis. Upon execution, each
state of M is characterized by an M-snapshot, in turn constituted by a data snapshot
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precisely, the only difference with the previous block is that, after handling the
exception via sub-block B2, the execution of the process continues without repeating
A. If the exception does not occur, the sub-block B1, which corresponds to the
expected behavior of the system, is executed instead of B2. The token semantics of
this block is analogous the one of the previous block. Again, we need to immediately
terminate all the sub-blocks of A when the exception/error occurs.

We conclude with the last exception block, called non-interrupting exception
block, depicted in the following picture:
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then waiting for additional applications to come. When the application management
subprocess is stopped (which we model through an error so as to test various types of
blocks in the experiments reported in Section 3.3), the applications present in the repos-
itory are all processed in parallel, declaring which candidates are eligible and which not
depending on their scores. Among the eligible ones, a winner is then selected, making
an offer to her. We implicitly assume here that at least one applicant is eligible, but we
can easily extend the DAB to account also for the case where no application is eligible./

As customary, each block has a lifecycle that indicates the current state of the block,
and how the state may evolve depending on the specific semantics of the block, and the
evolution of its inner blocks. In Section 2.2 we have already characterized the lifecycle
of tasks and catch events. For the other blocks, we continue to use the standard states
idle, enabled, active and compl. We use the very same rules of execution described
in the BPMN standard to regulate the progression of blocks through such states, taking
advantage from the fact that, being the process block-structured, only one instance of
a block can be enabled/active at a given time for a given case. For example, the life-
cycle of a sequence block S with nested blocks B1 and B2 can be described as follows
(considering that the transitions of S from idle to enabled and from compl back to
idle are inductively regulated by its parent block): (i) if S is enabled, then it becomes
active, simultaneously inducing a transition of B1 from idle to enabled; (ii) if B1 is
compl, then it becomes idle, simultaneously inducing a transition of B2 from idle to
enabled; (iii) if B2 is compl, then it becomes idle, simultaneously inducing S to move
from active to compl. The lifecycle of other block types can be defined analogously.

2.4 Execution Semantics

We intuitively describe the execution semantics of a case over DAB M = hD,Pi, using
the update/task logic and progression rules of blocks as a basis. Upon execution, each
state of M is characterized by an M-snapshot, in turn constituted by a data snapshot

12

This block is equivalent to the forward-exception block, with the only difference
that when an error occurs in the block A, A is not interrupted and continues its
execution. In this case, the token semantics is easier since the exception handler
is executed in parallel with the sequence flow formed by A and B1, and no token
from A is destroyed. Hence, either the sequence of A and B1 is executed, or both
the sequence and the exception handler B2 are run in parallel.

All the blocks presented so far present the same lifecycle as activities: in fact,
sequence blocks or more complex blocks can be thought as activities that can be
decomposed into simpler sub-activities.

10.2 Colored Petri Nets

Colored Petri nets (CPNs) [Jen92; Jen94; Jen97] is a well-known extension of
classical place/transition (or Petri) nets [Rei13] that was developed for simulating
and verifying reactive systems. The formalism of CPNs was introduced as a
language for modeling large systems and protocols that can at the same time
provide a solid theoretical framework for performing verification tasks. One of the
most significant features of CPNs is the existence of primitives for the definition
of data types and for describing data manipulation, which allow the creation of
compact and parameterizable models.
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10.2.1 Data Types
We consider a type set D as a finite set of pairwise disjoint types accounting for
the different kinds of objects in the domain of interest. Each type D ∈ D comes
with its own (possibly infinite) value domain ∆D, and with an equality operator
=D. When clear from the context, we simplify the notation and use = in place of
=D. Here are a few examples of data types: strings string = 〈S,=s〉, integers
int = 〈Z,=int〉, orders Order = 〈O,=o〉 and product types ProdType = 〈P,=p〉
used in some e-commerce application. Our definition of data types is essentially
used to symbolically distinguish different value domains. One could see it as an
extension of the pure names concept adopted in [RVFE08; RVFE11] that allows
to distinguish different “kinds” of names.

10.2.2 Preliminary Notions for Colored Petri Nets
We first fix some standard notions related to multisets. Given a set A, the set of
multisets over A, written A⊕, is the set of mappings of the form m : A→ N. Given
a multiset S ∈ A⊕ and an element a ∈ A, S(a) ∈ N denotes the number of times a
appears in S. We write an ∈ S if S(a) = n. We also consider the usual operations on
multisets. Given S1, S2 ∈ A⊕: (i) S1 ⊆ S2 (resp., S1 ⊂ S2) if S1(a) ≤ S2(a) (resp.,
S1(a) < S2(a)) for each a ∈ A; (ii) S1 + S2 = {an | a ∈ A and n = S1(a) + S2(a)};
(iii) if S1 ⊆ S2, S2 − S1 = {an | a ∈ A and n = S2(a)− S1(a)}; (iv) given a number
k ∈ N, k · S1 = {akn | an ∈ S1}; (v) |m| =

∑
a∈Am(a). A multiset over A is called

empty (denoted as ∅⊕) iff ∅⊕(a) = 0 for every a ∈ A.
We fix a countably infinite set VD of typed variables with a variable typing

function type : VD → D.
Given a formula ϕ expressed in some logical language, we call Vars(ϕ) the set

of all variables appearing in ϕ, and Const(ϕ) the set of all constants appearing
in ϕ. In what follows, with slight abuse of notation we assume that functions
type, Vars and Const are extended to account for sets, tuples and multisets
of variables and constants. For example, Vars({x, 1, a, y, z}) = {x, y, z} and
Const({x, 1, a, y, z}) = {1, a}.

10.2.3 Definition of Colored Petri Nets
In this section we introduce syntax and semantics of colored Petri nets [JK09].

A Petri net[Rei13] is a bipartite directed graph, constituted by the three basic
types of objects: places (drawn as circles or ellipses), transitions (drawn as rectangles
or bars) and directed arcs. In Figure 10.2, one can see a Petri net with three places
pi and five transitions tj. In every graph of that type directed arcs are connecting
transitions to places and places to transitions, while non-graph components, such
as output and input functions, define the relationship between the places and
transitions, ipso facto completing the basic Petri net definition. To represent a
state of the modeled system, Petri net places carry multisets of tokens. Colored
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Figure 10.2: A simple example of colored Petri net

Petri nets extend the notion of classical Petri nets by adding types to every places
and transitions. Thereby, in colored Petri nets tokens have values of the type
assigned to a place they reside in. In Figure 10.2, all places have type integer
and there are one token with value 6 that resides in p1 and one token with value
3 that resides in p1. Moreover, arcs are inscribed with expressions, which may
contain typed variables. For example, the arc from transition t4 to place p2 has
inscription x + 1, where x is a variable of type integer.

We now give the definition of Colored Petri Nets. CPNs have a color type,
which corresponds to a data type or to the cartesian product of multiple data types
from D. Intuitively, tokens are ‘colored’ in the sense that a (cartesian product
of) datatypes is assigned to each of them. Tokens in places are referenced via
inscriptions – tuples of variables and constants. We denote by ΩA the set of all
possible inscriptions over a set A.

We use a minimalistic definition of CPN where the input/output behavior of
transition is based on pattern matching for retrieving and generating tokens and
where the only element left unspecified is the logical language used to define data
guards on transitions. For that reason, we assume that a logic L is given as a
blackbox, together with its syntax and semantics: we also assume that the notion
of “(L-)validity” of an L-formula is well defined.

Definition 10.2.1 (Colored Petri net). A D-typed Colored Petri net N is a
tuple N = (D,L, P, T, Fin, Fout, color, guard), where:

1. P and T are finite sets of places and transitions, s.t. P ∩ T = ∅;
2. color : P → KD is a place typing function, where KD is a set of all possible

cartesian products D1 × . . .×Dm, s.t. Di ∈ D, for each i = 1, . . . ,m;
3. Fin : P × T → Ω⊕VD is an input flow, s.t. type(Fin(p, t)) = color(p) for every

(p, t) ∈ P × T ;
4. Fout : T × P → Ω⊕∆D

is an output flow, s.t. type(Fout(t, p)) = color(p) for
every (t, p) ∈ T × P ;

5. guard : T → L is a partial guard assignment function, assigning each
transition t to a formula guard(t) = ϕ(x) in the logic L, s.t. the every
variable x in ϕ is a variable appearing in the input inscriptions of t, i.e.
Vars(ϕ) ⊆ InVars(t), where InVars(t) = ∪p∈PVars(Fin(p, t)).
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We also define OutVars(t) := ∪p∈PVars(Fout(t, p)) and Vars(t) := InVars(t) ∪
OutVars(t).

The definition from [JK09] have some common elements, but the are different
when coming to way the data carried by tokens are inspected, manipulated and
generated.

Guards are used to impose conditions (using ϕ) on tokens flowing through the
net. As customary in high-level Petri nets, using the same variable in two different
arc inscriptions amounts to checking the equality between the respective components
of such inscriptions. For every transition t ∈ T , we also define •t = {p ∈ P | (p, t) ∈
dom(Fin)} as a pre-set of t and t• = {p ∈ P | (t, p) ∈ dom(Fout)} as a post-set of t.1

10.2.4 Semantics of CPNs.

We now give the execution semantics of a CPN. Ss a first step we introduce
the standard notion of net marking. Formally, a marking of a CPN N =
(D,L, P, T, Fin, Fout, color, guard) is a function m : P → Ω⊕D, so that m(p) ∈
∆⊕color(p) for every p ∈ P . We write 〈N,m〉 to denote a CPN N marked with m.

The firing of a transition t in a marking is defined w.r.t. a so-called binding
for t defined as σ : Vars(t)→ ∆D, where . Note that, when applied to (multisets
of) tuples, σ is applied to every variable singularly. For example, given σ =
{x 7→ 1, y 7→ a}, its application to a multiset of tuples ω = {〈x, y〉2, 〈x, b〉}
results in σ(ω) = {〈1, a〉2, 〈1, b〉}.

We now define when a transition can be called enabled. Essentially, a transition
is enabled with a binding σ if the binding selects data objects carried by tokens
from the input places, so that the data they carry make the guard attached
to the transition valid in L.

Definition 10.2.2. A transition t ∈ T is enabled in a marking m, written m[t〉, if
there exists binding σ satisfying the following: (i) σ(Fin(p, t)) ⊆ m(p), for every
p ∈ P ; (ii) σ(guard(t)) is L-valid;

When a transition t is enabled, it may fire. Next we define what are the effects
of firing a transition with some binding σ.

Definition 10.2.3. Let 〈N,m〉 be a marked CPN, and t ∈ T a transition enabled
in m with some binding σ. Then, t may fire producing a new marking m′, with
m′(p) = m(p) − σ(Fin(p, t)) + σ(Fout(t, p)) for every p ∈ P . We denote this as
m[t〉m′ and assume that the definition is inductively extended to sequences τ ∈ T ∗.

For 〈N,m0〉 we use M(N) = {m | ∃τ ∈ T ∗.m0[τ〉m} to denote the set of all
markings of N reachable from its initial marking m0.

1dom(f) denotes a domain of function f .
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10.2.5 Execution Semantics of CPNs.
The execution semantics of a marked CPN 〈N,m0〉 is defined in terms of a
(possibly) infinite-state transition system where states are labeled by reachable
markings and each arc (or transition) corresponds to the firing of a transition in
N with a given binding. The transition system captures all possible executions
of the net, by interpreting concurrency as interleaving. Formally, let 〈N,m0〉
be a marked CPN. Then its execution semantics is described by the transition
system ΛN = (S, s0,⇒), where:
• S is a possibly infinite set of markings over N ;
• ⇒⊆ S × T × S is a T -labelled transition relation between pairs of markings;
• S and ⇒ are defined by simultaneous induction as the smallest sets satisfying

the following conditions: (i) m0 ∈ S; (ii) given m ∈ S, for every transition t ∈ T ,
binding σ and marking m′ over N , if m[t〉m′, then m′ ∈ S and m t⇒ m′.
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framework presented in Part I to business processes. Specifically, in the first
half of the chapter we define a general model of Data-Aware Processes, called DAB,
which is a theoretical extension of the BPMN language with full-fledged relational
data. We also show how DABs can be translated into RASs, so as to transfer the
verification results for RASs described in Part I to this BPMN-oriented model. DABs
are similar in spirit to artifact systems concerning the treatment of relational data,
but employ a fragment of the BPMN language to express the process schema. We
state in Section 11.1 the main contributions that we provide by introducing DABs.

However, the DAB model is still too abstract in the way it represents and
manipulates relational data. This is the reason why in the second half of this
chapter we introduce an operational framework, called delta-BPMN, that can
be seen as a practice-oriented counterpart of DABs and that provides a concrete
verifiable language and a proof-of-concept implementation for modeling and verifying
data-aware business processes.

From a technical point of view, DABs can be seen as an intermediate model
between the model-theoretic framework of RASs and the operational framework of
delta-BPMN. DABs and delta-BPMN share the same process component, but the
data manipulation layer, although in clear correspondence with the one of DABs,
presents in delta-BPMN a more practice-oriented flavor, thanks to the use of an
SQL dialect. In this sense, it is useful and instructive to present DABs after RASs
but before delta-BPMN, so as to build a symbolic bridge between the foundational
framework and its BPM-oriented implementation.

11.1 Data-Aware BPMN: Main Contributions
The main question that we intend to answers in this chapter is the following: how
to extend BPMN towards data support, guaranteeing the applicability of the existing
parameterized verification techniques and the corresponding actual verifiers? We
answer this question by introducing a BPMN-styled theoretical framework for
modeling and verifying data-aware processes (DAPs).

Specifically, the first half of this chapter is devoted to introducing a data-aware
extension of BPMN, called Data-Aware BPMN (DAB), which supports case data
(i.e. data relevant to a specific process instance), as well as persistent relational data
partitioned into a read-only catalog and a read-write repository, as explained below.

In DABs the process component is formalized using a block-structured version
of the standard BPMN language: focusing on block-structured components helps
us in obtaining a direct, execution semantics, and a consequent modular and clean
automatic translation of various BPMN constructs (including boundary events and
exception handling): the possibility of having a modular automatic translation
will be crucial when we implement this theoretical framework in delta-BPMN, as
explained in the second half of this chapter. However, it is important to stress that
our theoretical approach for DABs would seamlessly work also for non-structured
processes where each case introduces boundedly many tokens. Data are represented
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as a full-fledged relational database in line with the data- and artifact-centric
tradition [CDGM13; Deu+18], and hence the theoretical framework of Part I.
Consistently with this literature, the running process evolves a set of relations (i.e.,
the read-write repository) comprising data objects that may have been injected
from the external environment (e.g., due to user interaction), or borrowed from
a read-only relational database with constraints (i.e., the read-only catalog). The
repository behaves as a working memory and a process log: it contains data that
can evolve during the process execution and it may accumulate unboundedly many
tuples resulting from complex constructs in the process, such as while loops whose
repeated activities insert new tuples in the repository (e.g., the applications sent
by candidates in response to a job offer). The catalog, instead, stores background,
contextual facts that do not change during the evolution of the system, such as the
catalog of product types, the usernames and passwords of registered customers in
an order-to-cash process. Case and persistent data are used to express conditions
in the process as well as task preconditions; tasks, in turn, change the values of the
case variables and interact with the repository via queries and updates.

By leveraging the formal framework of Part I, we first encode DABs into RASs.
Thanks to this encoding, we can effectively verify safety properties of DABs using
directly mcmt on the so obtained corresponding RASs.

Then, using this encoding and the results presented for RASs in Chapter 4, we
show that backward reachability is sound and complete when it comes to checking
safety of DABs as well. In this context, soundness means that whenever the
procedure terminates the returned answer is correct, whereas completeness means
that if the process is unsafe then the procedure will always discover it.

In order to guarantee termination, we finally introduce further conditions,
expressed as syntactic restrictions over the DAB under study, thus providing
a BPMN-grounded counterpart of what imposed in [LDV17] and presented in
Section 5.2.1 (e.g., the locality condition). Under these conditions, checking safety
for the class of DABs becomes decidable.

In the next sections we first formally define the DAB model (Section 11.2),
we then provide a high-level presentation of the encoding of DABs into RASs
(Section 11.3.3) and we describe the inherited verification results for DABs
(Section 11.3.4). To show that our approach goes end-to-end from theory to
actual verification, we finally conclude the first half of this chapter reporting some
preliminary experiments demonstrating how mcmt checks safety of DABs.

11.2 Data-Aware BPMN
We start by describing our formal model of data-aware BPMN processes (DABs).
Since this model will be then mapped to RASs, during the presentation we will
continuously highlight the correspondence existing among some features of DABs
and their counterparts in RASs.
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We focus here on private, single-pool processes, analyzed considering a single
case, similarly to soundness analysis in workflow nets [Aal97].1 Incoming messages
are therefore handled as pure nondeterministic events. The model combines a
wide range of (block-structured) BPMN control-flow constructs with task, event-
reaction, and condition logic that inspect and modify persistent as well as case
data. Given the aim of our approach, recall that if something is not supported
in the language, it is because it would hamper soundness and completeness of
SMT-based (parameterized) verification.

First, some preliminary notation used in this chapter. We consider a set
S = Sv ] Sid of (semantic) types, consisting of primitive types Sv accounting for
data objects, and id types Sid accounting for identifiers. Intuitively, the reader can
think of id types and primitive types as corresponding to id sorts and value sorts in
DB schemata, respectively (cf. Part I). We assume that each type S ∈ S comes
with a domain DS (finite when S ∈ Sid and possibly infinite when S ∈ Sv), a special
constant undefS ∈ DS to denote an undefined value in that domain, and a type-wise
equality operator =S. We omit the type and simply write undef and = when clear
from the context. We do not consider here additional type-specific predicates (such
as comparison and arithmetic operators for numerical primitive types); these will
be added in future work. In the following, we simply use typed as a shortcut for
S-typed. We also denote by D the overall domain of objects and identifiers (i.e.,
the union of all domains in S). We consider a countably infinite set V of typed
variables. Given a variable or object x, we may explicitly indicate that x has type
S by writing x : S. We omit types whenever clear or irrelevant. We compactly
indicate a possibly empty tuple 〈x1, . . . , xn〉 of variables as ~x, and with slight abuse
of notation, we write ~x ⊆ ~y if all variables in ~x also appear in ~y.

11.2.1 The Data Schema
Consistently with the BPMN standard, we consider two main forms of data: case
data2, instantiated and manipulated on a per-case basis; persistent data (cf. data
store references in BPMN), accounting for global data that are accessed by all
cases. For simplicity, case data are defined at the whole process level, and are
directly visible by all tasks and subprocesses (without requiring the specification
of input-output bindings and the like).

To account for persistent data, we consider relational databases. Similarly
to what done in Section 3.1, we describe relation schemas by using the named
perspective, i.e., by assigning a dedicated typed attribute to each component (i.e.,
column) of a relation schema. Also for an attribute, we use the notation a : S to
explicitly indicate its type. In the following definitions, we employ the dot notation

1The interplay among multiple cases is also crucial. The technical report [Cal+19b] already
contains an extension of the framework presented here, in which multiple cases are modeled and
verified.

2These are called data objects in BPMN, but we prefer to use the term case data to avoid name
clashes with the formal notions.
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R.field to denote specific ‘fields’ of a relation R such as its name, its attributes,
or its id, as they will be defined in the following.

Definition 11.2.1 (DAB Relation Schema). A relation schema is a pair R =
〈N,A〉, where: (i) N = R.name is the relation name; (ii) A = R.attrs is a nonempty
tuple of attributes.

We call |A| the arity of R. We assume that distinct relation schemas use distinct
names, blurring the distinction between the two notions (i.e., we set R.name = R).
We also use the predicate notation R(A) to represent a relation schema 〈R,A〉. An
example of a relation schema is given by User(Uid:Int, Name:String), where the
first component represents the id-number of a user, whereas the second component
is the string formed by her name.

Data schema

First of all, we define the catalog, i.e., a read-only, persistent storage of data that
is not modified during the execution of the process. Such a storage could contain,
for example, the catalog of product types and the set of registered customers and
their addresses in an order-to-cash scenario.

Definition 11.2.2 (DAB Catalog). A catalog Cat is a set of relation schemas
satisfying the following requirements:
(single-column primary key) Every relation schema R is such that the first

attribute in R.attrs has type in Sid, and denotes the primary key of the
relation; we refer to such attribute using the dot notation R.id.

(non-ambiguity of primary keys) for every pair R1 and R2 of distinct relation
schemas in Cat, we have that the types of R1 .id and R2 .id are different.

(foreign keys) for every relation schema R ∈ Cat and non-id attribute a ∈
R.attrs \ R.id with type S ∈ Sid, there exists a relation schema R2 ∈ R such
that the type of R2 .id is S; a is hence a foreign key referring to R2.

For additional details on the notions of primary and foreign keys in classical
relational databases, see Section 2.7. Notice that in the RAS framework, the catalog
corresponds to the (read-only) DB schema of a RAS: however, a catalog is formed
of relational symbols and no function symbol, whereas DB schemata usually use
an algebraic representation of relations via unary function symbols (cf. Part I).
We already remarked in Section 3.1 that these two different representations for
full-fledged relational database are essentially equivalent and interchangeable.

From now on, we assume that, whenever a variable x from V of type S ∈ Sid is
considered (where S is the id sort R.id for some relation R in the catalog), either it
takes values over the active domain of S or it is equal to undefS (see Chapters 2
ad 3 for details on ‘active domain’). This is also in line with variable assignments
in relational databases for RASs (Chapter 3).
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Example 11.2.16

Consider an alternative version of the running example of this thesis, i.e. a
simplified job hiring process in a company. To represent information related to
the process we make use of the Cat consisting of the following relation schemas:
• JobCategory(Jcid:jobcatID) contains the different job categories available in
the company (e.g., programmer, analyst, and the like) - we just store here
the identifiers of such categories;
• User(Uid:userID, Name:StringName, Age:NumAge) stores data about users

registered to the company website, and who are potentially interested in job
positions offered by the company.

Each case of the process is about a job. Jobs are identified by the type jobcatID.

We now define the data schema of a BPMN process, which combines a catalog
with: (i) a persistent data repository, consisting of updatable relation schemas
possibly referring to the catalog; (ii) a set of case variables, constituting local
data carried by each process case.

Definition 11.2.3 (DAB Data Schema). A data schema D is a tuple
〈Cat,Repo,X〉, where (i) Cat = D.cat is a catalog, (ii) Repo = D.repo is a set
of relation schemas called repository, and (iii) X = D.cvars ⊂ V is a finite set of
typed variables called case variables, such that:
• for every relation schema R ∈ Repo and every attribute a ∈ R.attrs whose type

is S ∈ Sid, there exists R′ ∈ Cat such that the type of R′.id is S;
• for every case variable x ∈ X whose type is S ∈ Sid, there exists R ∈ Cat such

that the type of R.id is S.

We use bold-face to distinguish a case variable x from a “normal" variable x. It is
worth noting that relation schemas in the repository are not equipped with an explicit
primary key, and thus they cannot reference each other, but may contain foreign keys
pointing to the catalog or the case identifiers. This is essential toward soundness
and completeness of SMT-based verification of DABs. It will be clear how tuples
can be inserted and removed from the repository once we will introduce updates.

Since the repository represents a set of evolving relations of the system, they
natively correspond to artifact relations (and hence to artifact components) of the
RAS framework (see Section 3.2.2 for details). Similarly, case variables correspond
to artifact variables in RASs.

Example 11.2.17

To manage key information about the applications submitted for the job hiring,
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the company employs a repository that consists of one relation schema:

Application(Jcid:JobcatID, Uid:UserID, Score:NumScore, Eligible:Bool)

NumScore is a finite-domain type containing 100 scores in the range [1,100].
For readability, we use the usual comparison predicates for variables of type
NumScore: as we discussed for the RAS version of this example, this is again
syntactic sugar and does not require to introduce datatype predicates in our
framework. Since each posted job is created using a dedicated portal, its
corresponding data do not have to be stored persistently and thus can be
maintained just for a given case. At the same time, some specific values have
to be moved from a specific case to the repository and vice-versa. This is
done by resorting to the following case variables D.cvars: (i) jcid : jobcatID
references a job type from the catalog, matching the type of job associated to
the case; (ii) uid : userID references the identifier of a user who is applying for
the job associated to the case; (iii) result : Bool indicates whether the user
identified by uid is eligible for winning the position or not; (iv) qualif : Bool
indicates whether the user identified by uid qualifies for directly getting the job
(without the need of carrying out a comparative evaluation of all applicants);
(v) winner : userID contains the identifier of the applicant winning the position.

At runtime, a data snapshot of a data schema consists of three components:
• An immutable catalog instance, i.e., a fixed set of tuples for each relation schema

contained therein, so that the primary and foreign keys are satisfied.
• An assignment mapping case variables to corresponding data objects.
• A repository instance, i.e., a set of tuples forming a relation for each schema

contained therein, so that the foreign key constraints pointing to the catalog are
satisfied. Each tuple is associated to a distinct primary key that is not explicitly
accessible.

Querying the data schema

To inspect the data contained in a snapshot, we need suitable query languages
operating over the data schema of that snapshot. We start by considering boolean
conditions over (case) variables. These conditions will be attached to choice
points in the process.

Definition 11.2.4 (DAB condition). A condition is a formula of the form ϕ ::=
(x = y) | ¬ϕ | ϕ1 ∧ ϕ2, where x and y are variables from V or constant objects from
D.

We make use of the standard abbreviation ϕ1 ∨ ϕ2 = ¬(¬ϕ1 ∧ ¬ϕ2).
We now extend conditions to also access the data stored in the catalog and

repository, and to ask for data objects subject to constraints. We consider the
well-known language of unions of conjunctive queries with atomic negation, which
correspond to unions of select-project-join SQL queries with table filters (as it
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will be clearer when the operational counterpart of DABs, i.e., the delta-BPMN
framework, will be introduced).

Definition 11.2.5 (DAB Conjunctive Queries). A conjunctive query with
filters over a data component D is a formula of the form Q ::= ϕ | R(x1, . . . , xn) |
¬R(x1, . . . , xn) | S(x1, . . . , xn) | Q1 ∧Q2, where ϕ is a condition with only atomic
negation, R ∈ D.cat and S ∈ D.repo are relation schemas of arity n, and x1, . . . , xn
are variables from V (including D.cvars) or constant objects from D. We denote by
free(Q) the set of variables occurring in Q that are not case variables in D.cvars.

For example, a conjunctive query JobCategory(jt) ∧ jt 6= HR lists all the job
categories available in the company, apart from HR.

Definition 11.2.6 (DAB Guard). A guard G over a data component D is an
expression of the form q(~x) ← ∨n

i=1Qi, where: (i) q(~x) is the head of the guard
with answer variables ~x; (ii) each Qi is a conjunctive query with filters over D;
(iii) for some i ∈ {1, . . . , n}, ~x ⊆ free(Qi). We denote by casevars(G) ⊆ D.cvars
the set of case variables used in G, and by normvars(G) = ⋃

i∈{1,...,n} free(Qi) the
other variables used in G.

To distinguish guard heads from relations, we write the former in camel case,
while the latter shall always begin with capital letters.

Definition 11.2.7. A guard G over a data component D is repo-free if none of its
atoms queries a relation schema from D.repo. A guard G is said to be boolean when
its head q is a boolean value.

Notice that going beyond this guard query language (e.g., by introducing
universal quantification) would hamper the soundness and completeness of SMT-
based verification over the resulting DABs.

As anticipated before, this language can be seen as a standard (but still quite
abstract) query language to retrieve data from a snapshot, but also as a mechanism
to constrain the combinations of data objects that can be injected into the process.
E.g., a simple guard input(y:string, z:string) → y 6= z returns all pairs of strings
that are different from each other. Picking an answer in this (infinite) set of pairs
can be interpreted as a (constrained) user input where the user decides the values
for y and z. Injected data (like user inputs) can be represented in DABs thanks to
the presence of answer variables ranging over the catalog: formally, these variables
correspond to existentially quantified data variables ranging over the read-only
DB in the RAS framework. We remind the reader that these variables need to be
specifically treated by our versions of the backward reachability procedure, which for
this aim employ suitable algorithms for quantifier elimination/cover computation
(see Chapters 4 and 7 for details on this).
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11.2.2 Tasks, Events, and Impact on Data
We now formalize how the process can access and update the data component when
executing a task or reacting to the trigger of an external event.

The update logic

We start by discussing how data maintained in a snapshot can be subject to
change while executing the process.

Definition 11.2.8 (DAB Updates). Given a data schema D, an update speci-
fication α is a pair 〈G,E〉, where: (i) G = α.pre is a guard over D of the form
q(~x) ← Q, called precondition; (ii) E = α.eff is an effect rule that changes the
snapshot of D, as described next. Each effect rule has one of the following forms:
(Insert&Set) INSERT ~u INTO R AND SET x1 = v1, . . . ,xn = vn, where: (i) ~u,~v are

variables in ~x, case variables or constant objects from D; (ii) ~x ∈ D.cvars
are distinct case variables; (iii) R is a relation schema from D.repo whose
arity (and types) match ~u. Either the INSERT or SET parts may be omitted,
obtaining a pure Insert rule or Set rule.

(Delete&Set) DEL ~u FROM R AND SET x1 = v1, . . . ,xn = vn, where: (i) ~u,~v are
variables in ~x or constant objects from D; (ii) ~x ∈ D.cvars; (iii) R is a relation
schema from D.repo whose arity (and types) match ~u. As in the previous rule
type, the AND SET part may be omitted, obtaining a pure (repository) Delete
rule.

(Conditional update) UPDATE R(~v) IF ψ(~u,~v) THEN η1 ELSE η2, where: (i) ~u is a
tuple containing variables in ~x or constant objects from D; (ii) ψ is a repo-free
guard (called filter); (iii) R is a relation schema from D.repo; (iv) ~v is a tuple
of new variables, i.e., such that ~v∩ (~u∪D.cvars) = ∅; (v) ηi is either an atomic
formula of the form R(~u′) with ~u′ a tuple of elements from ~x ∪ D ∪ ~v, or a
nested IF . . . THEN . . . ELSE.

We now comment on the semantics of update specifications. An update
specification α is executable in a given data snapshot if there is at least one
answer to the precondition α.pre in that snapshot. If this is the case, then the
process executor(s) can nondeterministically decide which answer to pick so as to
bind the answer variables of α.pre to corresponding data objects in D. This confirms
the interpretation discussed in Section 11.2.1 for which the answer variables of α.pre
can be seen as constrained user inputs in case multiple bindings are available.

Once a specific binding for the answer variables is selected, the corresponding
effect rule α.eff, instantiated using that binding, is issued. How this affects the
current data snapshot depends on which effect rule is adopted.

If α.eff is an insert&set rule, the binding is used to simultaneously insert a
tuple in one of the repository relations, and update some of the case variables –
with the implicit assumption that those not explicitly mentioned in the SET part
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maintain their current values. Since repository relations do not have an explicit
primary key, two possible semantics can be attached to the insertion of a tuple
~u in the instance of a repository relation R:
(multiset insertion) Upon insertion, ~u gets an implicit, fresh primary key. The

insertion then always results in the genuine addition of the tuple to the current
instance of R, even in the case where the tuple already exists there.

(set insertion) In this case, R comes not only with its implicit primary key,
but also with an additional, genuine key constraint defined over a subset
K ⊆ R.attrs of its attributes. Upon insertion, if there already exists a tuple
in the current instance of R that agrees with ~u on K, then that tuple is
updated according to ~u. If no such tuple exists, then as in the previous case ~u
gets implicitly assigned to a fresh primary key, and inserted into the current
instance of R. By default, if no explicit key is defined over R, then the entire
set of attributes R.attrs is considered as a key, consequently enforcing a set
semantics for insertion.

Example 11.2.18

We continue the job hiring example, by considering two update specifications
of type insert&set. When a new case is created, the first update is about
indicating what is the category of job associated to the case. This is done
through the update specification InsJobCat, where InsJobCat.pre selects
a job category from the corresponding catalog relation, while InsJobCat.eff
assigns the selected job category to the case variable jcid:

InsJobCat.pre , getJobType(c)← JobCategory(c)
InsJobCat.eff , SET jcid = c

When the case receives an application, the user id is picked from the correspond-
ing User via the update specification InsUser, where:

InsUser.pre , getUser(u)← User(u, n, a)
InsUser.eff , SET uid = u

A different usage of precondition, resembling a pure external choice, is the
update specification CheckQual to handle a quick evaluation of the candidate
and check whether she has such a high profile qualifying her to directly get an
offer:

CheckQual.pre , isQualified(q : Bool)← true
CheckQual.eff , SET qualif = q

As an example of insertion rule, we consider the situation where the candidate
whose id is currently stored in the case variable uid has not been directly judged
as qualified. She is consequently subject to a more fine-grained evaluation of
her application, resulting in a score that is then registered in the repository
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(together with the applicant data). This is done via the EvalApp specification:

EvalApp.pre , getScore(s : NumScore)← 1 ≤ s ∧ s ≤ 100
EvalApp.eff , INSERT 〈jcid,uid, s, undef〉 INTO Application

Here, the insertion indicates an undef eligibility, since it will be assessed in a
consequent step of the process.

Notice that, by adopting the multiset insertion semantics, the same user may
apply multiple times for the same job (resulting multiple times as applicant).
With a set insertion semantics, we could enforce the uniqueness of the application
by declaring the second component (i.e., the user id) of Application as a key.

If α.eff is a delete&set rule, then the executability of the update is subject to the
fact that the tuple ~u selected by the binding and to be removed from R, is actually
present in the current instance of R. If so, the binding is used to simultaneously
delete ~u from R and update some of the case variables – with the implicit assumption
that those not explicitly mentioned in the SET part maintain their current values.

Finally, a conditional update rule applies, tuple by tuple, a bulk operation over
the content of R. For each tuple in R, if it passes the filter associated to the rule,
then the tuple is updated according to the THEN part, whereas if the filter evaluates
to false, the tuple is updated according to the ELSE part.

Example 11.2.19

Continuing with our running example, we now consider the update specification
MarkE handling the situation where no candidate has been directly considered
as qualified, and so the eligibility of all received (and evaluated) applications
has to be assessed. Here we consider that each application is eligible if and only
if its evaluation resulted in a score greater than 80. Technically, MarkE.pre is a
true precondition, and:

MarkE.eff , UPDATE Application(jc, u, s, e)
IFs > 80 THEN Application(jc, u, s,true)
ELSE Application(jc, u, s,false)

If there is at least one eligible candidate, she can be selected as a winner
using the SelWinner update specification, which deletes the selected winner
tuple from Application, and transfers its content to the corresponding case
variables (also ensuring that the winner case variable is set to the applicant
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id). Technically:

SelWinner.pre , getWinner(jc, u, s, e)← Application(jc, u, s, e)
∧ e = true

SelWinner.eff , DEL 〈jc, u, s, e〉 FROM Application
AND SET jcid = jc,uid = u,winner = u,
result = e,qualif = false

Deleting the tuple is useful in the situation where the selected winner may
refuse the job, and consequently should not be considered again if a new winner
selection is carried out. To keep such tuple in the repository, one would just
need to remove the DEL part from SelWinner.eff.

Notice that all these types of updates are in line with the operations that are
supported by RASs (see Section 5.3 for details): we notice that the nomenclature
for DABs and for RASs is almost identical, apart from DAB conditional updates
that corresponds to bulk updates in the RAS framework.

The task/event logic

We now substantiate how the update logic is used to specify the task/event logic
within a DAB process. The first important observation, not related to our specific
approach, but inherently present whenever the process control flow is enriched
with relational data, is that update effects manipulating the repository must
be executed in an atomic, non-interruptible way. This is essential to ensure
that insertions/deletions into/from the repository are applied on the same data
snapshot where the precondition is checked, in accordance with the standard
transactional semantics of relational updates. Breaking simultaneity would lead to
nondeterministic interleave with other update specifications potentially operating
over the same portion of the repository. This is why in our approach we consider
two types of task: atomic and nonatomic.

Each atomic task/catching event is associated to a corresponding update
specification. In the case of tasks, the specification precondition indicates under
which circumstances the task can be enacted, and the specification effect how
enacting the task impacts on the underlying data snapshot. In the case of events,
the specification precondition constrains the data payload that comes with the event
(possibly depending on the data snapshot, which is global and therefore accessible
also from the perspective of an external event trigger), and the specification effect
how reacting to a triggered event impacts on the underlying data snapshot. More
concretely, this is realized according to the following lifecycle.

The task/event is initially idle, i.e., quiescent. When the progression of a case
reaches an idle task/event, such a task/event becomes enabled. An enabled
task/event may nondeterministically fire depending on the choice of the process
executor(s). Upon firing, a binding satisfying the precondition of the update
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Figure 11.1: DAB Basic blocks

specification associated to the task/event is selected, consequently grounding and
applying the corresponding effect. At the same time, the lifecycle moves from
enabled to compl. Finally, a compl task/event triggers the progression of its
case depending on the process-control flow, simultaneously bringing the task/event
back to the idle state (which would then make it possible for the task to be
executed again later, if the process control-flow dictates so).

The lifecycle of a nonatomic task diverges in two crucial respects. First of all,
upon firing it moves from enabled to active, and later on nondeterministically
from active to compl (thus having a duration). The precondition of its update
specification is checked and bound to one of the available answers when the
task becomes active, while the corresponding effect is applied when the task
becomes compl. Since these two transitions occur asynchronously, to avoid the
aforementioned transactional issues we assume that the effect operates, in this
context, only on case variables (and not on the repository).

11.2.3 Process Schema
A process schema consists of a block-structured BPMN diagram, enriched with
conditions and update effects expressed over a given data schema, according to what
described in the previous sections. As for the control flow, we consider a wide range
of block-structured patterns compliant with the standard. We focus on private
BPMN processes, thereby handling incoming messages in a pure nondeterministic
way. So we do for timer events, nondeterministically accounting for their expiration
without entering into their metric temporal semantics. Focusing on block-structured
components helps us in obtaining a direct, execution semantics, and a consequent
modular and clean translation of various BPMN constructs (including boundary
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Figure 11.2: Flow DAB blocks; for simplicity, we consider only two nested blocks, but
multiple nested blocks can be seamlessly handled.

events and exception handling). However, it is important to stress that our approach
would seamlessly work also for non-structured processes where each case introduces
boundedly many tokens, or in the case where the control-flow backbone of the
process is captured using a Petri net, as we will see in Chapter 12.

As usual, blocks are recursively decomposed into sub-blocks, the leaves being
task or empty blocks. Depending on its type, a block may come with one or more
nested blocks, and be associated with other elements, such as conditions, types of
the involved events, and the like. We consider a wide range of blocks, covering basic
(cf. Figure 11.1), flow (cf. Figure 11.2), and exception handling (cf. Figure 11.3)
patterns. Figure 11.4 gives an idea about what is covered by our approach. With
these blocks at hand, we finally obtain the full definition of a DAB.
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Figure 11.3: DAB exception handling blocks; for simplicity, we show a single boundary
event, but multiple boundary events and their corresponding handlers can be seamlessly
handled.

Definition 11.2.9 (DAB). A DABM is a pair 〈D,P〉 where D is a data schema,
and P is a root process block such that all conditions and update effects attached
to P and its descendant blocks are expressed over D.

Example 11.2.20

The full hiring job process is shown in Figure 11.4, using the update effects
described in Examples 11.2.18 and 11.2.19. Intuitively, the process works as
follows. A case is created when a job is posted, and enters into a looping
subprocess where it expects candidates to apply. Specifically, the case waits for
an incoming application, or for an external message signalling that the hiring
has to be stopped (e.g., because too much time has passed from the posting).
Whenever an application is received, the CV of the candidate is evaluated, with
two possible outcomes. The first outcome indicates that the candidate directly
qualifies for the position, hence no further applications should be considered.
In this case, the process continues by declaring the candidate as winner, and
making an offer to her. The second outcome of the CV evaluation is instead
that the candidate does not directly qualify. A more detailed evaluation is then
carried out, assigning a score to the application and storing the outcome into
the process repository, then waiting for additional applications to come. When
the application management subprocess is stopped (which we model through
an error so as to test various types of blocks in the experiments reported in
Section 11.3.4), the applications present in the repository are all processed in
parallel, declaring which candidates are eligible and which not depending on
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Figure 11.4: The job hiring process. Elements in squared brackets attach the update
specifications in Examples 11.2.18 and 11.2.19 to corresponding tasks/events.

their scores. Among the eligible ones, a winner is then selected, making an offer
to her. We implicitly assume here that at least one applicant is eligible, but we
can easily extend the DAB to account also for the case where no application is
eligible.

As customary, each block has a lifecycle that indicates the current state of the
block, and how the state may evolve depending on the specific semantics of the
block, and the evolution of its inner blocks. In Section 11.2.2 we have already
characterized the lifecycle of tasks and catch events. For the other blocks, we
continue to use the standard states idle, enabled, active and compl. We use
the very same rules of execution described in the BPMN standard to regulate the
progression of blocks through such states, taking advantage from the fact that, being
the process block-structured, only one instance of a block can be enabled/active at
a given time for a given case. In more details, each block is initially inactive and its
state is idle. When a process instance, throughout its execution, reaches an idle
block, it becomes enabled. This means that the enabled element may be then
nondeterministically executed depending on the choice of the process executor(s).
When the process instance has completed traversing the block, the block lifecycle
state changes from enabled to compl. The compl element then advances the
progression of the process instance following what is dictated by the parent block.
In the exact same moment, the block changes its state back to idle. For example,
the lifecycle of a sequence block S with nested blocks B1 and B2 can be described
as follows (considering that the transitions of S from idle to enabled and from
compl back to idle are inductively regulated by its parent block): (i) if S is
enabled, then it becomes active, simultaneously inducing a transition of B1

from idle to enabled; (ii) if B1 is compl, then it becomes idle, simultaneously
inducing a transition of B2 from idle to enabled; (iii) if B2 is compl, then it
becomes idle, simultaneously inducing S to move from active to compl. The
lifecycle of other block types can be defined analogously.
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of D (cf. Section 2.1), and a further assignment mapping each block in P to its current
lifecycle state.

Initially, the data snapshot fixes the immutable content of the catalog D.cat, while
the repository instance is empty, the case assignment is initialized to all undef, and the
control assignment assigns to all blocks in P the idle state, with the exception of P
itself, which is enabled. At each moment in time, the M-snapshot is then evolved by
nondeterministically evolving the case through one of the executable steps in the pro-
cess, depending on the current M-snapshot. If the execution step is about the progres-
sion of the case inside the process control-flow, then the control assignment is updated.
If instead the execution step is about the application of some update effect, the new M
-snapshot is then obtained by following Section 2.2.

3 Parameterized Verification of Safety Properties

We now focus on parameterized verification of DABs using SMT-based techniques
grounded in the theory of arrays.
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of D (cf. Section 2.1), and a further assignment mapping each block in P to its current
lifecycle state.

Initially, the data snapshot fixes the immutable content of the catalog D.cat, while
the repository instance is empty, the case assignment is initialized to all undef, and the
control assignment assigns to all blocks in P the idle state, with the exception of P
itself, which is enabled. At each moment in time, the M-snapshot is then evolved by
nondeterministically evolving the case through one of the executable steps in the pro-
cess, depending on the current M-snapshot. If the execution step is about the progres-
sion of the case inside the process control-flow, then the control assignment is updated.
If instead the execution step is about the application of some update effect, the new M
-snapshot is then obtained by following Section 2.2.

3 Parameterized Verification of Safety Properties

We now focus on parameterized verification of DABs using SMT-based techniques
grounded in the theory of arrays.
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11.2.4 Execution Semantics

We intuitively describe the execution semantics of a case over DABM = 〈D,P〉,
using the update/task logic and progression rules of blocks as a basis. Upon
execution, each state ofM is characterized by anM-snapshot, in turn constituted
by a data snapshot of D (cf. Section 11.2.1), and a further assignment mapping
each block in P to its current lifecycle state.

Initially, the data snapshot fixes the immutable content of the catalog D.cat,
while the repository instance is empty, the case assignment is initialized to all undef,
and the control assignment assigns to all blocks in P the idle state, with the
exception of P itself, which is enabled. At each moment in time, theM-snapshot is
then evolved by nondeterministically evolving the case through one of the executable
steps in the process, depending on the currentM-snapshot. If the execution step is
about the progression of the case inside the process control-flow, then the control
assignment is updated. If instead the execution step is about the application of some
update effect, the newM -snapshot is then obtained by following Section 11.2.2.

11.3 Parameterized Safety Verification of DABs

We now focus on parameterized verification of DABs using SMT-based techniques
grounded in the theory of arrays: in this section, we show how to apply these
techniques to DABs by first translating them into RASs and then by reducing the
verification problem for DABs to the one for RASs.
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11.3.1 Array-Based Artifact Systems and Safety Checking:
a Brief Summary

We recall that the setting of Array-Based Artifact Systems presented in Chapter 3
bridges the gap between SMT-based model checking of array-based systems [Ghi+08;
GR10a], and verification of data- and artifact-centric processes [Deu+18; DLV16].

Summarizing the main intuitions behind array-based systems from Section 3.2,
we remind the reader that an array-based system logically describes the evolution of
arrays of unbounded size. For the sake of completeness and of clarity, we report here
again Figure 11.5a, already used in Section 3.2 and intuitively showing a simple array-
based system consisting of a single array storing strings. The logical representation
of an array relies on a theory with two types of sorts, one accounting for the array
indexes, and the other for the elements stored in the array cells. An array changes
its content over time, and it is formalized using a function variable, called array state
variable. The interpretation of such a variable in a state is that of a total function
mapping indexes to elements: for each index, it returns the element stored by the
array in that index. Starting from an initial configuration (formalized by a state
formula I(a)), the interpretation changes through transitions (formalized by τ(a, a′))
when moving from one state to another, reflecting the intended manipulation on the
array. In such a setting, the safety verification problem is that of checking whether
the evolution induced by τ over a starting from a configuration in I(a) eventually
reaches one of the unsafe configurations described by a state formula K(a).

In Chapter 3, we have extended array-based systems towards an array-based
version of the artifact systems, considering in particular the sophisticated model in
[LDV17]. In the resulting formalism, called (Universal) RAS, a relational artifact
system accesses a read-only database with keys and foreign keys (cf. our DAB
catalog). In addition, it operates over a set of evolving relations possibly containing
unboundedly many updatable entries (cf. our DAB repository). Figure 11.5b gives an
intuitive idea of how this type of system looks like, using the catalog and repository
relations from Example 11.2.17. On the one hand, the catalog is treated as a rich,
background theory, which can be considered as a more sophisticated version of the
element sort in basic array systems. On the other hand, each repository relation
is treated as a set of arrays, in which each array accounts for one component of
the corresponding repository relation. A tuple in the relation is reconstructed by
accessing all such arrays with the same index. The cells of the arrays may point
to identifiers in the catalog, in turn related to other catalog relations via foreign
keys. In Chapter 4, we focused on parameterized (un)safety of (Universal) RASs,
verifying whether there exists an instance of the read-only database such that the
artifact system can reach an unsafe configuration, and we showed how to extend the
standard backward reachability for successfully solve this problem. In the following
subsection, we show how the RAS framework provides a natural foundational and
practical basis to formally analyze and verify DABs.
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11.3.2 Verification Problems for DABs
First, we need a language to express unsafety properties over a DABM = 〈D,P〉.
Properties are expressed in a fragment of the guard language of Definition 11.2.6
that queries repo-relations and case variables as well as the cat-relations that tuples
from repo-relations or case variables refer to. Properties also query the control state
of P. This is done by implicitly extending D with additional, special case control
variables that refer to the lifecycle states of the blocks in P (where a block named
B gets variable Blifecycle). Given a snapshot, each such variable is assigned to
the lifecycle state of the corresponding block (i.e., idle, enabled, and the like).
We use FP to denote the set of all these additional case control variables.

Definition 11.3.1 (DAB Property). A property overM = 〈D,P〉 is a guard G
over D and the control variables of P , such that every non-case variable in G also
appears in a relational atom R(y1, . . . , yn), where either R is a repo-relation, or R
is a cat-relation and y1 ∈ D.cvars.

Example 11.3.21

By naming HP the root process block of Figure 11.4, the property
(HPlifecycle = completed) checks whether some case of the process can
terminate. This property is unsafe for our hiring process, since there is at least
one way to evolve the process from the start to the end. Since DAB processes
are block structured, this is enough to ascertain that the hiring process is sound.
Property EvalApplifecycle = completed ∧ Application(j, u, s,true) ∧ s >
100 describes instead the undesired situation where, after the evaluation of
an application, there exists an applicant with score greater than 100. The
hiring process is safe w.r.t. this property (cfr. the 5th safe property from
Section 11.3.4).

We study unsafety of these properties by considering the general case, and also
the one where the repository can store only boundedly many tuples, with a fixed
bound. In the latter case, we call the DAB repo-bounded.

11.3.3 Translating DABs into Array-Based Artifact Sys-
tems

Given an unsafety verification problem over a DABM = 〈D,P〉, we encode it as
a corresponding unsafety verification problem over a RAS that reconstructs the
execution semantics ofM. For the sake of conciseness, we only provide here the
main intuition behind the translation, which is fully addressed in the technical report
[Cal+19b]: indeed, the details are quite tedious (and, nevertheless, straightforward)
and would detract attention from the main focus of this chapter, which is to provide
an operational and implemented framework for verifying data-aware processes.
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We remark that in the course of this chapter, whenever we introduced some
feature of DABs, we carefully linked it to its RAS counterpart already. In the
translation, D.cat and D.cvars are mapped into their corresponding abstractions
in RAS (namely, the RAS read-only DB schema and ‘artifact variables’, respec-
tively). Specifically, the relations from the DAB data schema are encoded into
a corresponding RAS read-only database by employing the equivalent functional
representation of typed relations with key dependencies supported by DB schemas
(cf. Section 3.1): we will see that this is the systematic way that we exploit for
translating relational databases into RASs or into the mcmt database-driven module
(a completely analogous translation will be discussed in Chapter 12 for encoding
the COA-net catalog into mcmt specifications). D.repo is instead encoded using
the intuition of Figure 11.5b: for each R ∈ D.repo and each attribute a ∈ R.attrs, a
dedicated array is introduced: this array is called ’artifact component’ in the RAS
formalism, and each relation in the repository corresponds to an artifact relation for
the corresponding RAS. Array indexes represent (implicit) identifiers of tuples in
R, in line with our repository model. To retrieve a tuple from R, one just needs to
access the arrays corresponding to the different attributes of R with the same index.
Finally, case variables are represented using (bounded) arrays of size 1 (‘global
arrays’, using the nomenclature of mcmt, cf. Section 9.2), i.e., what are called
‘artifact variables’ in the RAS model. On top of these data structures, P is translated
into a RAS transition formula that exactly reconstructs the execution semantics
of the blocks in P. We just provide a small but informative example on how to
translate in RASs transitions the execution semantics of the sequence block S with
nested blocks B1 and B2. For doing that, we use the syntax for mcmt transitions
in the database-driven mode (supposing by induction that the mcmt transitions
for the nested blocks have been already specified). Let us assume that, besides the
other local and global variables, we have declared the following global variables:

...
:global Slifecycle
:global B1lifecycle
:global B2lifecycle
...

Before the sequence block is enabled, the lifecycle of sub-blocks B1 and B2
are in the idle state. Then, the sequence block execution semantics is given
by the following three transitions.
:comment First Part
:transition
:var j
:guard (= Slifecycle enabled)
:numcases 1
:case
...
:val active
:val enabled
:val B2lifecycle
...



11. Data-Aware BPMN and delta-BPMN 249

In the first one, when S is enabled, it becomes active, simultaneously
turning the lifecycle of B1 from idle to enabled.

:comment Second Part
:transition
:var j
:guard (= B1lifecycle compl)
:numcases 1
:case
...
:val Slifecycle
:val idle
:val enabled
...

In the second one, when B1 is compl, it becomes idle, simultaneously turning
the lifecycle of B2 from idle to enabled.

:comment Third Part
:transition
:var j
:guard (= B2lifecycle compl)
:numcases 1
:case
...
:val compl
:val B1lifecycle
:val idle
...

Finally, in the third transition, when B2 is compl, it becomes idle, simulta-
neously inducing S to move from active to compl, as wanted.

For the other blocks the translation is analogous, but the interested reader
should be particularly careful in the case of exception blocks (see [Cal+19b] for
all the details). Regarding the update logic and the interaction between tasks
and repository, notice that the insertion/set/deletion/conditional updates faithfully
correspond to operations supported by RASs and described in Section 5.3.

With these observations in mind, we define BReachDAB as the backward
reachability procedure that: (1) takes as input (i) a DABM, (ii) a property ϕ to
be verified, (iii) a boolean indicating whetherM is repo-bounded or not (in the first
case, also providing the value of the bound), and (iv) a boolean indicating whether
the semantics for insertion is set or multiset; (2) translatesM into a corresponding
RAS M̂, and ϕ into a corresponding unsafe formula ϕ̂ over M̂ (Definition 11.3.1
ensures that ϕ′ is indeed a RAS state formula); (3) returns the result produced by
the mcmt backward reachability procedure for RASs BReachRAS on M̂ and ϕ̂.

11.3.4 Verification Results
By exploiting the DAB-to-RAS translation and the formal results for RASs studied
in Part I, we are now ready to provide the main technical contributions of this
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chapter. First and foremost: DABs can be correctly verified using BReachDAB. We
make this intuition more precise by adapting the meta-properties from Chapter 4.

Given a DABM = 〈D,P〉 and a property υ overM, a SAFE (resp. UNSAFE)
result is correct iff M is safe (resp. unsafe) w.r.t. υ.

Definition 11.3.2. Given a DABM and a property υ, a verification procedure
for checking unsafety ofM w.r.t. υ is: (i) sound if, when it terminates, it returns a
correct result; (ii) complete if, whenever UNSAFE is the correct result, then UNSAFE
is indeed returned.

Effectiveness means again that means that all subprocedures in the algorithm
can be effectively executed.

Theorem 11.3.1. BReachDAB is effective, sound and complete for checking unsafety
of DABs that use the multiset or set insertion semantics.

Proof. The theorem is an immediate consequence from Corollary 4.3.3 for RASs
and the translation from DABs to RASs described in the previous subsection.

Completeness guarantees that whenever a DAB is unsafe with respect to a
property, then BReachDAB terminates and detects this. In general, as pointed out
in Chapter 4 for RASs, BReachRAS is not guaranteed to terminate, so BReachDAB
neither. Hence, BReachDAB is a semi-decision procedure for unsafety.

We study additional conditions on the input DAB for which BReachDAB is
guaranteed to terminate, then becoming a full decision procedure for unsafety. The
first, unavoidable condition is on the constraints used in the catalog: its foreign
keys cannot form referential cycles (where a table directly or indirectly refers to
itself). This is in line with the termination result for SASs presented in Section 5.1.
To define acyclicity, we associate to a catalog Cat a characteristic graph G(Cat)
that captures the dependencies between relation schema components induced by
primary and foreign keys. Specifically, G(Cat) is a directed graph such that:
• for every R ∈ Cat and every attribute a ∈ R.attrs, the pair 〈R, a〉 is a node of
G(Cat) (and nothing else is a node);
• 〈R1, a1〉 → 〈R2, a2〉 if and only if one of the two following cases apply: (i) R1 = R2,
a1 6= a2, and a1 = R1 .id; (ii) a2 = R2 .id and a1 is a foreign key referring R2.

Definition 11.3.3. A DAB is acyclic if the characteristic graph of its catalog is so.

Theorem 11.3.2. BReachDAB terminates when verifying properties over repo-
bounded and acyclic DABs using the multiset or set insertion semantics.

Proof. First, notice that Cat is acyclic iff its corresponding DB schema in the
translated RAS is acyclic. Hence, a DAB is acyclic iff its translated RAS has
an acyclic DB schema. Moreover, repo-bounded implies that, in our translation
from DABs to RASs, one can use artifact variables for representing the repository
relations of DABs. This is trivial since we do not need (undounded) indexes (taken
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from some artifact sort) in case of n-ary DABs repo-relations S whose size is
bounded by some k, since it is sufficient to associate every tuple in S to n ∗ k
corresponding artifact variables. Hence, repo-bounded RASs can be translated into
SASs. In view of the previous observations, the theorem is then an immediate
consequence from the termination result for SASs stated in Theorem 5.1.1 and from
the translation from DABs to RASs, once noticed that repo-bounded and acyclic
DABs can be translated into acyclic SASs.

If the input DAB is not repo-bounded, acyclicity of the catalog is not enough:
termination requires to carefully control the interplay between the different
components of the DAB. While the required conditions are quite difficult to grasp
at the syntactic level, they can be intuitively understood using the following locality
principle (which corresponds to locality for RASs): whenever the progression of
the DAB depends on the repository, it does so only via a single entry in one
of its relations. Hence, direct/indirect comparisons and joins of distinct tuples
within the same or different repository relations cannot be used. To avoid indirect
comparisons/joins, queries cannot mix case variables and repository relations.

Thus, set insertions cannot be supported, since by definition they require to
compare tuples in the same relation. In general, update specifications obeying to
the restrictions of Definition 11.2.2 cannot directly inquire the repository in their
preconditions, but only work over it in the effect. This means that they cannot
directly encode the situation of an update specification U that should be executed
only if the repository is in a desired state s. However, we can, to some extent,
simulate such a blocking update with two consecutive restricted updates. In the first
step, the update employs its effects to load from the repository to dedicated case
variables xaux,1, . . . ,xaux,k the necessary information to check whether s holds or not.
In the second step, the update checks for s in its precondition by inquiring the case
variables, and not directly the repository. The entire sequence is then executable if
and only if U is executable. Notice that according to the definition of the delete
rule, we do not need to explicitly query in the precondition the repo-relation R

from which we delete a tuple in its effect.
We now state the main decidability result of this chapter.

Theorem 11.3.3. Let M be an acyclic DAB that uses the multiset insertion
semantics, and is such that for each update specification u of M, the following
holds:

1. If u.eff is an insert&set rule (with or without an explicit INSERT part), u.pre
is repo-free;

2. If u.eff is a delete&set rule, then u.pre is repo-free and all case variables appear
in the SET part of u.eff;

3. If u.eff is a conditional update rule, then u.pre is repo-free and boolean (i.e., it
returns either false or the empty tuple), so that u.eff only makes use of the
new variables introduced in its UPDATE part (as well as constant objects in D).

Then, BReachDAB terminates when verifying repo-free properties overM.
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Proof. The proof is an immediate consequence of Theorem 5.2.1 and of the
translation from DABs to RASs described in the previous subsection. Indeed,
we preliminarily notice that acyclic DABs are translated to acyclic RASs. Moreover,
if the conditions of the theorem are satisfied, one can easily see that such DABs
employ update specifications that correspond via the translation to the strongly
local RASs transitions studied in Section 5.3. Finally, we notice that repo-free
properties overM clearly correspond via the translation to strongly local unsafe
formulae for RASs. We then conclude by remembering that Theorem 5.2.1 states
termination of BReachRAS for acyclic RASs with strongly local transitions, when
applied to strongly local unsafe formulae.

Notably, the conditions of Theorem 11.3.3 represent a concrete, BPMN-like
counterpart of the abstract conditions used in Section 5.2.1 (and in [LDV17])
toward decidability.

Specifically, Theorem 11.3.3 uses two conditions: (i) repo-freedom, and (ii) the
manipulation of all case variables at once. We now intuitively explain how these
conditions substantiate the aforementioned locality principle. Overall, the main
difficulty is that case variables may be loaded with data objects extracted from the
repository. Hence, the usage of a case variable may mask an underlying reference to
a tuple component stored in some repo-relation. Given this, locality demands that
no two case variables can simultaneously hold data objects coming from different
tuples in the repository. At the beginning, this is trivially true, since all case
variables are undefined. A safe snapshot guaranteeing this condition continues to
stay so after an insert and/or set rule of the form in point 1 or after a conditional
update rule of the form in point 3 from Theorem 11.3.3: a repo-free precondition
ensures that the repository is not queried at all, and hence trivially preserves
locality. Clearly, locality may be easily destroyed by arbitrary delete&set rules
whose precondition accesses the repository: a precondition retrieving objects from
the repository, can in principle extracts them from different tuples therein. This case
can be avoided by imposing repo-freedom. However, this property is not sufficient
for guaranteeing locality in case of arbitrary delete&set rules. Indeed, a subtle
situation where a repo-free delete&set would destroy locality is the one in which
the objects retrieved from (the same tuple in) the repository are only used to assign
a proper subset of the case variables: the other case variables could in fact still
hold objects previously retrieved from a different tuple in the repository. Point 2 of
Theorem 11.3.3 guarantees that this never happens by imposing that, upon a set or
delete&set operation, all case variables are involved in the assignment. Those case
variables that get objects extracted from the repository are then guaranteed to all
implicitly point to the same, single repository tuple retrieved by the delete rule.

Example 11.3.22

By considering the data and process schema of the hiring process DAB, one
can directly show that it can be easily transformed to an equivalent DAB
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obeying to all conditions in Theorem 11.3.3, in turn guaranteeing termination
of BReachDAB. For example, rule EvalApp in Example 11.2.18 matches
point 1 since EvalApp.pre is repo-free, so it can be left as it is. An update
specification to slightly change is instead SelWinner from the same example.
Following the intuition given above, we split it into two non-interrupting update
specifications SelWinner1 and SelWinner2 as follows. First, we use the effect
of SelWinner1 to load the tuple (jc, u, s, e) from the repo-relation Application
to dedicated new additional case variables xaux,1, . . . ,xaux,4:

SelWinner1.pre , getWin1 (jc : jobcatID, u : UserId, s : String, e : Bool)← true
SelWinner1.eff , DEL 〈jc, u, s, e〉 FROM Application

AND SET xaux,1 = jc,xaux,2 = u,xaux,3 = s,xaux,4 = e
jcid = undef,uid = undef, result = undef,
qualif = false,winner = undef,

Notice that in the previous update the precondition is repo-free and all case
variables appear in the SET part, so point 2 of Theorem 11.3.3 is matched.

In the second step, the update statement SelWinner2 checks for the validity
of the original precondition of SelWinner in its precondition by inquiring the
new case variables xaux,1, . . . ,xaux,4 (and not directly the repository), and then
it performs the original update of SelWinner.

SelWinner2.pre , getWin2 (∅)← xaux,4 = true
SelWinner2.eff , SET jcid = xaux,1,uid = xaux,2,winner = xaux,2,

result = xaux,4

Notice that in the previous update the precondition is repo-free, so point 1 of
Theorem 11.3.3 is matched.

First Experiments with MCMT

We have manually encoded the job hiring DAB described in this chapter into
mcmt, systematically following the translation rules recalled in Section 12.2, and
fully spelled out in [Cal+19b] when proving the main theorems of Section 11.3.4.

prop. time(s)

sa
fe

1 0.20
2 5.85
3 3.56
4 0.03
5 0.27

un
sa
fe

1 0.18
2 1.17
3 4.45
4 1.43
5 1.14

Running mcmt Version 2.8 (http://users.mat.unimi.
it/users/ghilardi/mcmt/), we have checked the encoding
of the job hiring DAB for process termination (which took
0.43sec), and against five safe and five unsafe properties. For
example, the 1st unsafe property describes the desired situation
in which, after having evaluated an application (i.e., EvalApp

is completed), there exists at least an applicant with a score
greater than 0. Formally: EvalApplifecycle = completed ∧
Application(j, u, score, e) ∧ score > 0. The 4th safe property
represents instead the situation in which a winner has been
selected after the deadline (i.e., SelWin is completed), but the
case variable result witnesses that the winner is not an eligible

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
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candidate. Formally: SelWinlifecycle = completed ∧ result = false. mcmt
returns SAFE, witnessing that this configuration is not reachable from the initial
states. Additional properties (taken from the table on the right) are described
in [Cal+19b].

The table on the right summarizes the obtained, encouraging results, reporting
the mcmt running time in seconds. The mcmt specifications containing all the
properties to check (together with their intuitive interpretation) are available
in [Cal+19b], and all tests are directly reproducible. Experiments were performed
on a machine with Ubuntu 16.04, 2.6GHz Intel Core i7 and 16GB RAM.

We stressed again that these experiments were performed over an example
manually encoded into mcmt, but exploiting the formal translation from DABs
to RASs. We now devote the remaining part of this chapter to introduce an
operational and implemented framework where the translation from DABs into
RASs is fully automatized.

11.4 From DABs to delta-BPMN
In the first part of this chapter, we introduced a BPMN-oriented general framework,
called DABs, for modeling and verifying data-aware processes.

When dealing with formalisms integrating processes with data, a fundamental
dimension that is worth investigating is about the choice of modeling constructs:
it would be essential to employ the same constructs that are offered by process
and data modeling standards such as BPMN and SQL, especially in view of the
concrete applicability of such integrated formalisms. Unfortunately, the DAB model
only partially fulfils this requirement: indeed, while the process component is
represented by using (the block-structured fragment of) the BPMN standard,
the data manipulation layer is rather abstract and hardly usable in practice.
Specifically, the data schema presented in Subsection 11.2.1, although important
since inspired by artifact-centric models, presents an abstract language that cannot
be straightforwardly encoded in concrete data manipulation languages such as
SQL. At the same time, the plethora of constructs employed to model data-aware
processes is not suitable to express the standard languages in their full generality, as
verification becomes immediately undecidable if they are not adequately restricted
[CDGM13]. A last crucial issue is that the vast majority of the literature in this
spectrum mainly provides theoretical results that do not directly translate into
effective modeling and verification tools.

In the second half of this chapter, we tackle these limitations and propose delta-
BPMN, an operational and implemented framework for modeling and verifying
BPMN models enriched with data, which is based on standard languages like SQL
and BPMN. Indeed, in Section 11.6 we introduce the front-end data modeling and
manipulation language PDMML, which relies on the formal framework of DABs,
by using a SQL-based dialect to formalize the manipulation of case and persistent
data, and show how it can be embedded into a (block-structured) fragment of
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BPMN that captures the process backbone. In Section 11.5 we will discuss the
related work, by comparing PDMML with other concrete, verifiable data-aware
process modeling languages existing in the literature.

In Subsection 11.7.1 we show how the delta-BPMN front-end can be realized in
Camunda3, one of the most popular BPMN environments. In Subsection 11.7.2 we
also report on the implementation of a translator that, building on the encoding rules
abstractly defined in [Cal+19b], takes a delta-BPMN model created in Camunda
and transforms it into the syntax of the ‘database-driven module’ of mcmt (cf.
Chapter 9), to directly perform safety verification over delta-BPMN models. delta-
BPMN is currently a prototype and still work in progress: while presenting its
features along the chapter, we also report the current status of its implementation.

11.5 Requirement Analysis for delta-BPMN and
Related Existing Tools

The integration of data and processes is a long-standing line of research at the
intersection of BPM, data management, process mining, and formal methods. Since
our focus is on verification, we circumscribe the relevant works to those dealing
with the formal analysis of data-aware processes. This is also crucial because
the choice of language constructs is affected by the task one needs to solve - in
particular, verifying such sophisticated models requires to suitably control the data
and control-flow components as well as their interaction [CDGM13; Deu+18].

A second important point is that the vast majority of the contributions in this
line of research provide foundational results, but do not come with corresponding
operational tools for verification. Hence, all in all, we consider in this research
only those approaches for the integration of data and processes that come with
verification tool support: VERIFAS [LDV17], BAUML [EST18], ISML [Pol+19],
dapSL [Cal+19f], and the delta-BPMN approach considered here, which relies on
the DAB formal model as its foundational basis.

We use these approaches to distill a series of important requirements on languages
for verifiable data-aware processes, indicating which approaches provide full (+),
partial (+/−), or no support (−) for that requirement. The first two requirements
concern verifiability, respectively capturing foundational and practical aspects.

RQ 1. The language should be operationally verifiable with a tool.

While the approaches above all come with an operational counterpart for
verification, there are huge differences in how this support is provided. VERIFAS
comes with an embedded, ad-hoc verification tool (+) that supports the model
checking of properties expressed in a fragment of first-order LTL. BAUML encodes
verification into a form of first-order satisfiability checking over the flow of time
(+), defining a fixed set of test cases expressing properties to be checked as derived

3https://camunda.com

https://camunda.com
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Table 11.1: Requirements coverage (covered +, partially (+/−), not −)

Framework RQ 1 RQ 2 RQ 3 RQ 4 RQ 5 RQ6 verification logic
VERIFAS [LDV17] + + − + + y fragment of LTL-FO
BAUML [EST18] + +/− + + + n fixed test cases
ISML [Pol+19] +/− − +/− + +/− n state-space exploration
dapSL [Cal+19f] +/− − +/− + − n state-space exploration
delta-BPMN + + +/− + + y data-aware safety

predicates. ISML relies on state-space construction techniques for Colored Petri nets,
but in doing so it assumes that the data domains are all bounded (+/−); no specific
verification language is defined, leaving to the user the decision on how to explore
the state space. dapSL relies instead on an ad-hoc state-space construction that,
under suitable restrictions, is guaranteed to faithfully represent in a finite-state way
the infinite state space induced by the data-aware process; however, no additional
techniques are defined to explore the state space or check temporal properties of
interest (+/−). Finally, delta-BPMN, since it is based on DABs, encodes verification
of (data-aware) safety properties into the state-of-the-art mcmt model checker (+).

The second requirement concerns the analysis of key properties (such as
soundness, completeness, and termination) of the algorithmic techniques used
for verification. This is crucial since, in general, verifying data-aware processes
is highly undecidable [CDGM13; Deu+18].

RQ 2. The verification techniques come with an analysis of key properties such as
soundness, completeness, termination.

Since ISML and dapSL do not come with specific algorithmic techniques for
verification, no such analysis is provided there (−). BAUML relies on first-order
satisfiability techniques that come with semi-decidability guarantees. In [EST18], it
is claimed that for a certain class of state-bounded artifact systems, verification
terminates; however, this is not guaranteed, as for that class only decidability of
verification is known, not that the specifically employed satisfiability algorithm
terminates (+/−). VERIFAS comes with a deep, foundational study on the
boundaries of decidability of verification [DLV16]; the study identifies classes of data-
aware processes for which finite-state abstractions can be constructed, guaranteeing
termination of the verifier when analyzing such classes (+). Finally, delta-
BPMN relies on the foundational DAB framework, where soundness, completeness,
termination of the algorithmic technique implemented in mcmt are extensively
studied (+) (see Section 11.3.4 for these results).

The third crucial requirement is about the type of language adopted, and whether
it adheres to accepted standards or is instead rather ad-hoc.

RQ 3. The language relies on well-assessed standards for processes and data.
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Recall that, to carry out verification, the features supported by the language
need to be carefully controlled. So we do not assess approaches based on their
coverage of constructs, but rather focus on which notations they employ. On the
one hand, approaches like VERIFAS adopt a language inspired by artifact-centric
models but defined in an abstract, mathematical syntax (−). At the other end of
the spectrum, BAUML comes with a combination of UML/OCL-based models to
specify the various process components (+). In between we find the other proposals
(+/−): ISML relies on Petri nets and employs data definition and manipulation
languages defined in an ad-hoc way; dapSL instead defines the control-flow implicitly
via condition-action rules, and uses a language grounded in the SQL standard for
querying and updating the data. delta-BPMN relies on a combination of (block-
structured) BPMN and SQL for data manipulation; while standard SQL is employed
for data queries and updates, the language has to be extended with some ad-hoc
constructs when it comes to actions and (user) inputs (+/−).

In data-aware processes, it is essential to capture the fact that while the process
is executed, new data can be acquired.

RQ 4. The language supports the injection of data into the process by the external
environment.

All of the listed approaches agree on the need of equipping the language with
mechanisms to inject data from the external environment. VERIFAS and BAUML
allow one to nondeterministically assign values from value domains to (special)
variables, ISML extends this functionality with an ability to guarantee that assigned
values are globally fresh (but then it works by assuming a fixed finite domain
for such fresh input), whereas dapSL supports all such functionalities using a
language of service calls. In delta-BPMN we adopt a data injection approach
similar to the one used in VERIFAS.

When executing process cases, one typically distinguishes at least two types
of data: volatile data attached to the case itself, and persistent data that may be
accessed and updated by different cases at once. This leads to our last requirement.

RQ 5. The language distinguishes volatile and persistent data elements.

While BAUML, VERIFAS, and DAB natively provide distinct notions for case
variables and underlying persistent data (+), ISML models conceptually account for
token data and separate facts, but such facts are not stored in a persistent storage
(+/−), while dapSL models all data as tuples of a relational database (−).

At last, a very important aspect that puts the approaches into two distinct
groups, is whether persistent data are managed under a unique access policy, or
instead there is a fine-grained distinction based on how the process can access
them. This impacts the type of verification conducted, as discussed below. Since
supporting or not read-only data simply separates the different approaches, but
does not correspond to a qualitative difference, we simply put ‘yes’ (y) when it
is supported and ‘no’ (n) when it is not.
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RQ 6. The language separates read-only persistent data from persistent data that
are updated during the execution.

This is an important distinction because it heavily affects the type of verification
that must be considered [CDGM13; Deu+18]. On the one hand, approaches like
BAUML, dapSL, and ISML that do not distinguish read-only from updatable
persistent data (n) require to fully fix their initial configuration, and provide
verification verdicts by considering all possible evolutions of the process starting from
this initial configuration. Contrariwise, approaches like VERIFAS and delta-BPMN
that do this distinction (y) in turn focus on forms of parameterized verification
where the properties of interest are studied for every possible configuration of
the read-only data, certifying whether the process correctly works regardless of
which specific read-only data are picked.

Table 11.1 summarizes the different requirements and support provided by the
analyzed literature. We take this as a basis to compare the delta-BPMN language
and verification infrastructure with the other existing approaches. For completeness,
we also indicate in the table which verification properties are considered in each
approach.

It is also worth noting that there is a plethora of other approaches falling into
the artifact-/data-/object-centric spectrum. For example, Guard-Stage-Milestone
(GSM) language [DHV11], the object-aware business process management framework
of PHILharmonic Flows [KWR11], the declarative data-centric process language
RESEDA based on term rewriting systems [Sec+18]. In a nutshell, these approaches
combine data and processes dimensions, but largely focus on modeling, with few
exceptions offering runtime verification of specific properties (e.g., RESEDA allows
for a specific form of liveness checking) supported by a tool.

Other relevant works investigate the integration of data and processes with a
system engineering approach [Mey+13; Fah+16; Dad+09] tailored to modeling
and enactment. Of particular relevance is ADEPT [Dad+09], which is similar in
spirit to delta-BPMN, as it allows to combine a block-structured process modeling
language with SQL statements to interact with an underlying relational storage,
with the goal of providing execution and analytic services. The main difference
with delta-BPMN is that our PDMML language focuses on conservative extensions
of (block-structured) BPMN and SQL to obtain a verifiable, integrated model.

11.6 The PDMML Language
To realize the modeling requirements introduced in Section 11.5, we rely on the DAB
framework. The main issue there is that while the process backbone relies on (block-
structured) BPMN, the definition and manipulation of data is done with an abstract,
mathematical language that does not come with a concrete, user-oriented syntax.

To define a delta-BPMNmodel, we then revisit the data component of the process,
introducing a Process Data Modeling and Manipulation Language (PDMML) .
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We do so in two steps: first, we start from BPMN and isolate the main data
abstractions that must be represented in our framework, introducing suitable data
definition operations in PDMML; second, we build on top of the abstract, logical
language introduced in Section 11.2.1 and introduce a concrete counterpart for
data manipulation statements in PDMML, using SQL as main inspiration. In this
way, we achieve compliance with RQ 3. We then integrate PDMML language
for data inspection and manipulation within BPMN blocks, so as to comply with
RQ 3 for both the data and the control-flow aspects.

Notice that, deliberately, PDMML does not come with explicit mechanisms to
refer to other process instances from a given instance. This is due to technical
reasons related to verification, which will be highlighted in Section 11.7.2.

11.6.1 Sources of Data and their Definition
While BPMN does not introduce any specific language to manipulate and query
data, it introduces two main abstractions to account for them: data objects,
representing volatile data manipulated by each case in isolation; and persistent
stores, representing persistent units of information that are accessed and updated
possibly by multiple cases.
Persistent data. The data component of delta-BPMN is completely in line with
the theoretical framework provided by DABs (and, clearly, of RASs). We report
here for completeness the features of PDMML, stressing here once for all that
they bijectively correspond to their counterparts in DABs. To account for RQ 6,
PDMML allows to define two types of persistent storages with different access
policies. More specifically, we use a so-called repository R to store data that can
be both queried and updated, and a catalog store C with a read access only. The
declaration of these two stores is done with a set of statements, each accounting
for a relation schema (or table) therein. Each table comes with typed attributes
defining the names of the table columns with the respective (value) types.

An attribute is declared in PDMML as A : T, where A is an attribute name
and T is its type. Each type is of one of the following three different forms: (i) a
primitive, system-reserved type (such as strings and integers); (ii) a dedicated id
type TR accounting for the identifiers of table R (like ISBNs for the Book table - if
they are used as primary key to identify books); (iii) a data type accounting for a
semantic domain (like person names or addresses). The separation between data
types and primitive types in PDMML may seem confusing, since in DABs they both
collapse into DABs primitive types: however, since PDMML should be thought as
a more practice-oriented setting, we prefer here to distinguish system-reserved type
from semantic domains. For every catalog table, say, with name R, PDMML also
requires to define an attribute with name id and a distinguished id type TR, so as
to account for the primary key of that table in an unambiguous way.

Based on these notions, a catalog is a set of catalog tables, each defined with a
statement of the form R(id :TR,A1 :T1, . . . ,An :Tn), where: (i) R is the table name;
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(ii) id :TR is the explicit table identifier of R with a dedicated (identifier) type TR;
(iii) n+ 1 is the table arity; (iv) for every i ∈ {1, . . . , n}, Ti is a primitive type, an
identifier type of some relation in the catalog or a data type. Each catalog table is
equipped with a table id attribute of the form id :TR, always assumed to appear in
the first position. According to the definition, the other attributes may have, as type,
the identifier type of another catalog table. This mechanism is used to define, in a
compact way, the presence of a foreign key dependency relating two catalog tables.
The notion of catalog presented here is equivalent to the one employed for DABs.

Similarly to the case of a catalog, a repository is a set of repository tables, each
defined with a similar statement to that of catalog tables, with the only difference
that now there is no explicit table identifier. This means that, while repository
tables can reference catalog tables, they cannot reference other repository tables,
and thus behave like free relations. Conceptually, this is not a limitation, since the
idea behind the use of the repository is not to support a full-fledged database (as it
is done for the catalog), but to provide a working memory where data taken from
the catalog, case variables and external sources are accumulated and manipulated.
This approach to model the repository is in line with the foundational framework
of [DLV16; LDV17]. In addition, it enjoys the key properties of these sophisticated
scenarios – hence we have to stick with it in the light of RQ 1. Again, the notion
of repository introduced here is equivalent to DAB repository.

As customary, when defining tables, PDMML requires that each table name
is used only once overall (at the catalog and repository level). Hence we can use
the table name to unambiguously refer to the table as a whole. To disambiguate
attributes from different tables, we sometimes use a dot notation, where R.A
indicates attribute A within table R. In addition, table aliases can be used within
queries towards expressing self-joins.4

Volatile data. For modeling volatile, case data in a way that makes them
compatible with persistent data, we use typed variables whose declaration signature
is similar to the one of attributes. Specifically, a case variable with name v and
type T is then simply defined in PDMML as a statement #v :T. The definition of
the volatile data of a process then just consists of a set of case variable statements.

The collective set of declarations for case variables, catalog relations, and
repository relations is called data model.

Example 11.6.23

Consider a mortgage approval process followed by the Customer Service
Representatives (CSR) department of a bank.a To manage information about
available mortgage types, customers’ bank accounts, submitted applications,
status of their records and possible mortgage approval results, the process relies

4This latter feature is currently not supported by the implementation, but it will be supported
soon. The page https://tinyurl.com/y6npo4kz provides a continuously updated list of
the most recent, newly added features.

https://tinyurl.com/y6npo4kz
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Figure 11.6: Supported BPMN blocks

on multiple sources of data.
Each mortgage application is created by a CSR employee and can be managed

throughout the process execution by using process variables. At the same
time, certain data values have to be moved from volatile case variables to
a persistent repository, and vice-versa. In this process, for example, we use
variables #cid :CID, #bid :BaID,#bankAmount :Num to store information about
a customer as well as their eligible bank account, and variables #tid : MTID,
#duration :Num,#amount :Num to collect data for the mortgage contract.

The information static to the process (i.e., it shall never be updated) is
stored in the CSR’s read-only database. For example, table BankAccount(BAid :
BankAccountID,CBA : CID,Deposit : int, StatusBank : String) contains infor-
mation about possibly multiple bank accounts owned by the customers together
with the account status information retained in StatusBank :String), whereas
MortgageType(Mid : MTID,Name : String,Amount : Num,Duration :
Num, Interest :Num) contains details regarding various mortgage offers, including
information on mortgage duration and the amount of interests to be paid.

aFor delta-BPMN we consider a new example, that builds on a model from Business
Process Incubator (see https://tinyurl.com/8au7xfmw) enriched with data by analogy
with a similar model from the benchmark in [LDV17].

11.6.2 The Process Component of delta-BPMN
The control-flow backbone of a delta-BPMN process relies on the recursive
composition of block-structured BPMN patterns that adhere to the standard BPMN
2.0 syntax. We focus on block-structured BPMN since this allows us to define a
direct execution semantics also for advanced constructs like interrupting exceptions
and cancelations, and to exploit this upon verifying the resulting models. This
choice is completely in line with the theoretical framework of DABs presented in
Section 11.2: we stress again that this is because delta-BPMN should be thought
as the operational implemented counterpart of DABs.

https://tinyurl.com/8au7xfmw
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Although, conceptually, delta-BPMN supports the same set of blocks as DABs,
its current implementation covers the fundamental blocks shown in Figure 11.6.
The implementation of the other blocks does not present any additional technical
difficulty: their implementation is just ongoing work and will be discussed in the
conclusions of this thesis as future work.

As usual, blocks are classified into leaf blocks (in our case, tasks and events)
and non-leaf blocks that combine sub-blocks in a specific control-flow structure. As
described in Subsection 11.2.3, each block has a lifecycle, where its states can be
idle, enabled, active and compl. The execution rules used for regulating the
evolution of each block depending on its type faithfully reconstruct what prescribed
by the BPMN standard. We just provide here another example of block different
from the one presented in Subsection 11.2.3. Consider a deferred choice block S

with two sub-blocks B1 and B2. Its lifecycle starts in state enabled, that can be
nondeterministically progressed to state active. This progression simultaneously
forces the change of state of B1 and B2 from idle to enabled. As soon as one
of the two sub-blocks, say, B1 is selected, it moves to active whereas its sibling
block B2 goes back to idle. As soon as B1 finishes by reaching state compl, it
switches to idle and triggers a simultaneous transition of the parent block S from
active to compl. Following this logic, one can analogously and exhaustively
define the lifecycle model for each type of block.

Example 11.6.24

Figure 11.7 shows the control-flow backbone of the mortgage approval process
(Example 11.6.23), represented in delta-BPMN by following the same block
decomposition.

The main, open question is how data enter into the definition of blocks. Following
the BPMN standard, this is handled in two distinct points: leaf blocks (capturing
tasks and events), and (data-driven) choices. Such blocks are annotated with
suitable PDMML statements to capture data inspection and manipulation. This
is handled next.

11.6.3 Inspecting and Manipulating Data with PDMML

To express how a task/event inspects and manipulates data, we are still consistent
with the DAB theoretical framework, but with some significant differences: the data
manipulation logic of DABs is a bit too abstract to be employed in a concrete tool.
That is why we prefer here to introduce a language, called PDMML that is a dialect
of the SQL language, and that can be used in practice in our implementation.

We decorate our tasks/events with three distinct PDMML expressions, respec-
tively defining: (i) newly declared variables, to account for external data input; (ii) a
precondition, providing possible bindings for the input variables of the task/event
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considering the catalog, the repository, as well as the case and newly defined
variables; (iii) an effect that, once a binding for the newly declared variables and
for the input variables is picked, determines how the task/event manipulates the
case variables and the repository.

An obvious choice to inspect relational data as those present in our catalog
and repository is to resort to relational query languages such as SQL. This choice
would be in line with RQ 3. However, our setting requires to consider two crucial
aspects. On the one hand, it is important to coherently employ a single query
language to account for different querying needs, such as expressing the precondition
of a task or the conditions determining which route to take in a choice. On the
other hand, differently from pure SQL, our queries have to consider the presence of
case variables, addressing the possibility of simultaneously working over persistent
and volatile data, as well as the possibility of injecting data from the external
environment. For example, think of a job category that has been chosen by an
applicant during the application process (and thus suitably stored in a dedicated
case variable) and for which the process should provide all open positions. In
this case one would need to use the job category value in the WHERE clause of a
dedicated SELECT query accessing the catalog that already contains information
about all the positions for the previously selected category. At the same time, one
might also want to query only the current state of the case variables, or to ask the
user to provide their credit card number when paying a fee.
Newly declared variables. The ability of injecting a data object of type T
form the external environment (cf. RQ 4) is handled through a newly declared
variable with the following PDMML statement decl ::= (var v :T)∗, where v is the
name of the newly declared variable. Upon execution, v is bound to any value
from T . When attached to a task, newly declared variables can be seen as an
abstract representation of a user form or a web service result. When attached
to an event, they represent the event payload. These variables are essential for
performing non-deterministic updates, in line of what done in, e.g., [LDV17]: on
the one hand, in the RAS framework they correspond to existentially quantified
data variables ranging over the read-only database; on the other hand, in the mcmt
syntax, they correspond to :eevar variables. These variables are the ones that
need to be eliminated by our extended version of backward reachability that we
introduced in the previous parts of the thesis.
Preconditions. Preconditions indicate under which circumstances a task can be
executed or an event triggered. They also retrieve data from the catalog, repository,
case variables and newly defined variables attached to the same leaf block. To
account for these different aspects, PDMML incorporates a hybrid SQL-based query
language that can retrieve volatile and persistent data at once. Consistently with the
execution semantics of DABs that is, in turn, in line with the customary “variable
binding” abstraction employed in formalisms such as Colored Petri nets, the typical
usage of queries in our framework is to return a set of answers from which one
is (nondeterministically) picked to induce a progression step within the process.
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Notice that this way of managing query results is customary in the artifact-centric
literature [CDGM13; DLV16; LDV17], and is consistent with Chapter 3.

To define preconditions, we first need to introduce PDMML conditions, defined
as:

cond ::= x1 � x2 | cond1 AND cond2 | cond1 OR cond2

Essentially, a PDMML condition is a boolean expression (with negation pushed
inwards) over atomic conditions of the form x1�x2, where x1 and x2 are expression
terms (whose specific shape is determined by the context in which the condition is
used), and � ∈ {=, 6=, >,<,≤,≥}) is a comparison operator. In atomic conditions,
we assume component-wise type compatibility of terms (e.g., the two operands
in x1 � x2 must have the same type). Notice that, as customary, the atomic
condition TRUE (capturing the condition that always succeeds) can be defined as
an abbreviation (similarly for FALSE).

Using conditions as atomic building blocks, a PDMML precondition is defined as:

pre ::= cond | query
query ::= SELECT A1, . . . ,As FROM R1 , . . . ,Rm WHERE filter

filter ::= cond | TUPLE (~x) IN R | TUPLE (~x) NOT IN R
| filter1 AND filter2 | filter1 OR filter2

Here, each Ri from the SQL-like query can be a repository or a catalog relation,
whereas R from filter can only be a catalog relation. This is in line with theoretical
results for U-RAS and, consequently, for DABs. 5Terms in cond of pre can be case
variables, constants, or newly defined variables declared in the same leaf block.
Instead, terms used in cond of filter coincide with those from above, but can also
use attributes that appear in the FROM statement of the contingent query expression
(i.e., A1, . . . ,As). When writing queries, notation R.A can be used to more explicitly
refer to attribute A of table R. The language of preconditions defined above can be
trivially translated in the language of unions of conjunctive queries with atomic
negation presented in the context of DABs (cf. Subsection 11.2.1).

Example 11.6.25

In the mortgage approval process scenario touched in Examples 11.6.23
and 11.6.24, the following query can be used to list bank accounts of the
customers who have completed the mortgage application procedure:

SELECT BAid, CBA, StatusBank FROM BankAccount
WHERE CBA = #cid AND #status = CompletedApplication

5We remark here that the constructs TUPLE (~x) IN R and TUPLE (~x) NOT IN R has not
implemented yet.
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Here, #status :String indicates the current status of the process.

Effects. Task/event effects consist of data manipulation PDMML statements
operating over case variables and repository tables. In the following, we use term
input variable to refer to newly defined variables or attributes of the precondition
attached to the same leaf block of the effect under scrutiny.

Each case variable #v can be updated using a trivial assignment statement
#v = u, where u is either a constant or an input variable. It is assumed that,
for each case variable, at most one case variable assignment statement can be
written within one update.

One can also model insertion and deletion of tuples into the persistent storage.
Since the catalog is read-only, these updates can be performed only on the repository
relations.

An insertion (statement) on some repository relation R is defined as INSERT
v1, . . . , vn INTO R, where each vi is either a constant, a case variable or an input
variable. This INSERT statement is similar to the corresponding classical DML (data
manipulation language) statement in SQL. However, we deliberately avoid using the
VALUES clause since we insert one tuple at a time, and so we can rely on the more
compact notation where the elements to be inserted are directly indicated close to R.

A deletion (statement) is defined as DELETE v1, . . . , vn FROM R. Here,
similarly to the insertion, each vi is either a constant, a (case) variable, or an
input variable, whose type coincides with the type of the i-th attribute in R.

We also allow to perform conditional updates. For that, we employ a modified
SQL CASE statement directly embedded into the update logic. This statement
logically resembles an if-then-else expression with multiple else-if branches, and
in which each condition in the if -part is a query. To ensure verifiability as in the
context of DABs (cf. Subsection 11.2.2) (cf. RQ 1), it is necessary for the statement
to obey to one limitation: it cannot access any other repository table beyond the
one that is being updated. The conditional update statement has the form:

UPDATE R SET R.a1=@v1,. . .,R.am=@vm WHERE
CASE WHEN F1 THEN @v1=u1

1,. . .,@vm=u1
m

. . .
WHEN Fk THEN @v1=uk

1,. . .,@vm=uk
m

ELSE @v1=ue
1,. . .,@vm=ue

m

This statement is the most sophisticated one in the offered language as it requires
the modeler to take care of the following two aspects. First, similarly to the SQL’s
UPDATE statement, which can modify multiple tuples in a table, ours performs a
(conditional) bulk edit of elements in each tuple of R, and the SET clause specifies
(using names of the attributes of R with the R’s name in the prefix)6 what are
exactly those elements. The SET clause also uses placeholder variables @vj that

6This disambiguates the situation where the same relation R is used in the update precondition
with some of its attributes both appearing in the SELECT and some of the WHEN clauses.
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support the conditional update logic: whenever a tuple in R satisfies one of the
Fi filters, the corresponding THEN clause will assign concrete values uij to all the
placeholder variables mentioned in SET. Second, the modeler has to carefully control
the variables and attributes used both in the WHEN and THEN clauses. As we have
already mentioned above, each Fi cannot access repository relations but R itself. At
the same time, it can reuse elements from the precondition query such as variables
and attributes. This, in turn, allows to use Fi for filtering results returned by the
precondition query, and thus allowing to carefully select the data that are going
to be used in the final update of every single tuple of R. As for the elements
appearing in THEN clauses, their values can be constants as well as elements taken
from results returned by the precondition query.

Notice that assignments, insertions, deletions and conditional updates are
completely analogous to their corresponding counterparts in the update logic
layer of the DAB theoretical framework (cf. Subsection 11.2.2): they can be
trivially translated into the DAB model. In the following we provide a few examples
demonstrating correct and illegal update statements.

Example 11.6.26

Continuing with the example of the mortgage approval example, we now give the
example of a legal conditional update handling the assessment of the eligibility
of a mortgage application. To manage key information about the applications
submitted for the mortgage approval, the bank employs a repository that
consists of one relation schema:

Info(Bank :BaID, StatusB :String,Reliability :String)

Here, for each application, CSR performs an assessment procedure, during
which all customer’s bank accounts are checked for reliability. All the accounts
with histories that did not include any fraudulent charges, are then marked
accordingly in relation Info. Technically, we formalize this situation with a
conditional update of the form:

UPDATE Info SET Info.Reliability=@v WHERE
CASE WHEN Info.StatusB!=fraud THEN @v=Yes

ELSE @v= No

Note that the when-then-else clause allows us to perform a bulk update over
the repository relation Info by changing the reliability status of its entries.

Consider the repository relation Rejected(Bank :BaID), storing bank accounts
that have been already rejected before in the process by another department.
The following update statement, that additionally checks if the bank account
has already been rejected, is illegal, since the condition of the first case involves
the repo-relation Rejected:
UPDATE Info SET Info.Reliability=@v WHERE
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CASE WHEN Info.StatusB!=fraud AND TUPLE (Info.Bank) NOT IN Rejected
THEN @v=Yes ELSE @v=No

The overall execution semantics of leaf blocks (e.g., tasks or events) is analogous
the one defined for DABs in Subsection 11.2.2: we only notice that when the
leaf block is enabled, beside the binding of the (standard) attributes in the
precondition, also a binding for its newly defined variables is provided. In delta-
BPMN, we always assume that, in the case of a task having both a precondition
and an effect, the task is atomic at the level of data updates: this is done, as
discussed for DABs, to avoid race conditions with other update specifications
potentially operating over the same case variables or repository tables. Notice that
race conditions can still occur at the level of the process, when parallel blocks and
sequences of tasks/events are employed. Consequently, requiring atomicity for leaf
blocks with preconditions and effects does not lead to a loss of generality.

11.6.4 Guards for Conditional Flows

The last place where PDMML statements are needed is in the context of blocks
employing choice splits as a way to conditionally route process instances. Specifically,
each conditional flow is linked to a PDMML condition whose terms are case variables
or constants. Notice that using only case variables is not a limitation, since, as
we have seen before, case variables can be filled with data extracted from the
catalog/repository, or injected from the external environment.

As shown in Figure 11.6, we assume that each choice split foresees two outputs
with complementary guards. This means that the user has to specify only one
guard ϕ, while the other guard (indicated as ¬ϕ in the figure) is automatically
constructed via syntactic manipulation of ϕ as follows: De Morgan laws are applied
until negation appears just in front of atomic conditions, and then the negated
atomic conditions are replaced by their corresponding, complementary conditions
(e.g., ≤ is substituted by >).

We have now completed the definition of PDMML. In the next section we show
how PDMML is practically realized in delta-BPMN.

11.7 delta-BPMN in Action

We now put delta-BPMN in action, considering both modeling and verification.
For more details and for downloading it, see [Ghi+21a].
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Figure 11.7: A delta-BPMN model with a few examples of Camunda-based annotations
(taken as screenshots from the tool)

11.7.1 Modeling delta-BPMN Processes with Camunda

We discuss how Camunda, one of the most widely employed (open-source) platforms
for process modeling and automation, can be directly adapted to model delta-BPMN
processes. We in particular employ the Camunda Modeler environment (camunda.
com) to create the process control-flow, and its extension part to incorporate
PDMML statements. At this stage, it is not essential to recognize the process
blocks (and check whether the process control-flow is block-structured): we just
annotate the overall process model with the data definitions, the tasks/events with
the corresponding PDMML preconditions and effects, and the choice branches
with PDMML boolean queries.

An alternative possibility would have been to require the modeler to explicitly
insert data object and data store icons in the process model, and annotate those.
However, this would clutter the visual representation of the process, creating
unreadable diagrams.

More specifically, to declare repository (resp., catalog) relations we use a
dedicated persistent store symbol called Repository (resp., Catalog). The
declarations themselves, separated by the semicolon from one another, are put into
the documentation box of the element’s documentation. For example, Figure 11.7
demonstrates a snapshot of a catalog declaration containing definitions of two
relations Customer and MortgageType from Example 11.6.23. We deal similarly
with case variables: a single data object called Process variables is used,
whose documentation box contains all case variable declarations with the semicolon
being used as a separator (cf. Figure 11.7).

camunda.com
camunda.com
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Modeling queries as well as other data manipulation expressions in traditional
BPMN 2.0 could be done using annotations. This could be considered as a more
traditional approach that, however, as we have already discussed above, can lead
to difficulties in managing the processes diagram. Instead, we propose to handle
such expressions declaratively within the Camunda extension elements. Given that
properties in Camunda are represented as key-value pairs, adding a declaration is
rather easy: one needs to use a special data manipulation expression identifier as
the key and the actual expression as the value. Consistently with Section 11.6, we
use the following reserved identifiers: (i) cond – a gateway/flow condition identifier;
(ii) pre – a precondition identifier; (iii) var – a new typed variable declaration
identifier; (iv) eff – an update statement identifier.

Each key is meant to be used only with values of a particular type. Like that,
cond and pre identify queries, whereas var and eff respectively denote new
variable declarations and update statements. All the BPMN elements that admit
the aforementioned extensions can have multiple var and eff identifiers. This
is useful as there can be more than one new typed variable declaration as well as
multiple case variable assignment statements.

Example 11.7.27

Task Process Complete Application in Figure 11.7 selects a mortgage type in case a
customer has agreed to apply for it. This is done by adding a pre-identified
property to extension elements of the task with the following query that
nondeterministically selects one mortgage type from the MortgageType relation:
SELECT Mid FROM MortgageType WHERE #status = FillApp AND e > 0

AND g > 0

As an effect, this task is supposed to move a chosen mortgage type ID to a
dedicated case variable, and decide on the amount of money asked as well as the
interest to be paid in case the mortgage offer gets accepted. The latter is done
with two newly declared variables e and g, and three eff-identified properties
with the following case variable assignments: #tid = Mid, #duration = e and
#amount = g. Note that the last two essentially model a user input and thus
realize the data injection mentioned in RQ 4.

All the queries identified with cond can be used only in blocks containing choice
splits (i.e., blocks from Figure 11.6 with ϕ annotations on the arcs). In Figure 11.7,
we show a screenshot of a simple condition assigned to one of the XOR gateways
of the loop block.
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11.7.2 Encoding delta-BPMN Camunda Processes in
MCMT

To make delta-BPMN processes modeled in Camunda verifiable (cf. RQ 1) we
have implemented a translator that takes as input a .bpmn file produced by
Camunda following the modeling guidelines of the previous section, and transforms
it into the syntax of the state-of-the-art model checker that can verify data-aware
processes parametrically to the read-only relations, namely mcmt run in the
database-driven mode (cf. Chapter 9).

The translation first checks whether the input model is block-structured, isolating
the various blocks. This is done through traversal algorithm that is of independent
interest. Each block is then separately converted into a corresponding set of mcmt
instructions by implementing, rule by rule, the encoding mechanism sketched in
Section 11.3.3 and presented in detail in [Cal+19b]. This works since the concrete
PDMML syntax introduced here for data definition and manipulation faithfully
mirrors the abstract, logical language employed there.

For verification, we obviously need also to express which properties we want to
check. Every property is currently defined as a condition (whose expression terms, in
the sense used in Subsection 11.6.3, are case variables or constants), which specifies
a “bad”, undesired state of the model: we plan to implement more sophisticated
properties mentioning also repository and catalog relations, analogously to DAB
properties (cf. Definition 11.3.1).

To add a property, we employ the same mechanism as above that uses
Camunda extension elements. More specifically, we add another reserved identifier
verify which can be used to add property key-value pairs directly to the process.
For example, one can write the PDMML condition (#status=Archived AND
lifecycleMortgage=Completed) to verify the safety of the model in Figure 11.7, in
particular ascertaining whether the mortgage approval process has been finalized
with the customer not being interested in the related offer (see the related End
event Client not interested in Figure 11.7), thus resulting in her application being
archived. Notice that here we use a special variable lifecycleMortgage to access the
process lifecycle state. In general, one may query the process lifecyle by using a
special case variable lifecycleModelName, where ModelName is the actual process
model name. Verification of lifecycle properties for single blocks can be tackled
by introducing dedicated case variables, manipulating them in effects according
to the lifecycle evolution of the block.

It is important to mention that, although this feature is not explicitly reflected in
the PDMML language, delta-BPMN provides support for modeling and verification
of multi-instance scenarios in which process instances can access and manipulate the
same catalog and repository. Formal details are given in [Cal+19b]. In summary,
[Cal+19b] indicates that unboundedly many simultaneously active process instances
can be verified for safety if they do not explicitly refer to each other (i.e., they
do not expose their own case identifiers to other instances). Explicit mutual
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Figure 11.8: Conceptual architecture of the delta-BPMN framework

references can instead be handled if the maximum number of simultaneously active
process instances is known a-priori.

Figure 11.8 shows the overall toolchain employed for verification. First, a modeler
has to produce a delta-BPMN process by enriching a regular block-structured BPMN
2.0 process with a PDMML specification via Camunda extensions using the technique
from above. Camunda Modeler then allows to export the delta-BPMN process as
an XML-formatted .bpmn file. This file can be then processed by our Java-based
tool, called deltaBPMN, that employs the following APIs for generating the process
specification that can be readily verified by mcmt (http://users.mat.unimi.
it/users/ghilardi/mcmt/). In the nutshell, the tool takes two major steps
to process the delta-BPMN model. First, it uses the Camunda’s BPMN model
API to access process components from the input .bpmn file and uses our block
traversal API as well as PDMML parser to recognize blocks as well as PDMML
statements/declarations and consecutively generate delta-BPMN objects. The latter
are specified according to the object model that has been mainly distilled from
the DAB formalism and that consists of three major parts: a data schema storing
all case variable and relation declarations (from both R and C), a process schema
storing nested supported process block definitions, and a data logic containing
update declarations and conditions assigned to blocks. The block traversal API
uses a newly developed algorithm for detecting nested blocks that comply to the
object model structure. Via the deltaBPMN2SMT translation API that internally
follows the formal translation from DABs to RASs, the tool then processes the
extracted object model and generates a text file containing the delta-BPMN process
specification rewritten in the mcmt syntax.

Finally, the derived specification can be directly checked in the mcmt tool
that, in turn, will detect whether the specification is safe or unsafe with respect
to the “bad” property specified in the initial model. Details on mcmt working
can be found in Chapter 9; here we just recall that mcmt can be executed in the
command line using the following command: [time] mcmt <filename>. Here,

http://users.mat.unimi.it/users/ghilardi/mcmt/
http://users.mat.unimi.it/users/ghilardi/mcmt/
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argument [time] is not mandatory, but can be used if one wants to display the
mcmt execution time. More information on the model checker installation process,
the language for specifying safety properties of delta-BPMN models, advanced
execution options and additional details, together with the actual delta-BPMN
implementation, can be found on the tool website here: https://github.com/
mrMorningLemon/delta-BPMN. In addition, as a prototypical example, the
mortgage approval example (together with the property to verify described in
this subsection) is available as a delta-BPMN process specification on the same
website. This example, called Mortgage.bpmn, is specified using the Camunda
extensions described above, and is ready to be converted by delta-BPMN into a
specification file in the .txt format that can be directly executed by mcmt. This
mcmt specification file, when run by mcmt, returns UNSAFE in secs, as expected:
the modeled property to verify was, in fact, a reachable configuration of the system.

11.8 A Brief Discussion on Limitations of DABs
and delta-BPMN

We conclude the chapter with some considerations on the limitations we imposed
on data schemas for DABs/delta-BPMN and their query languages. Their are
fully justified in view of the goal we want to achieve: performing parameterized
safety verification. Indeed, these limitations are needed if one wants to leverage
the formal framework of RASs presented in Part I, which, in turn, is one of the
most powerful and expressive settings for performing parameterized verification of
DAPs, as we argued along this thesis. Thus, full verifiability always comes with
a price in terms of limitations on expressiveness.

Nevertheless, these limitations are not so restrictive: we extensively argued
in the thesis and showed in several concrete examples that our DAP models are
quite expressive and suitable to formalize real-world business processes. This is also
confirmed by the benchmark of concrete data-aware business processes that has
been anlayzed in the experimental section of Chapter 9, which our approach proved
to model and verify in a successful way. However, the usability of our approach
for modeling concrete and industry-inspired benchmarks of business processes is
an open research problem: this is an important future work and it is beyond the
scope of the thesis. We will deepen this discussion in Chapter 13.

https://github.com/mrMorningLemon/delta-BPMN
https://github.com/mrMorningLemon/delta-BPMN
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In this chapter, we provide the second main application of the formal framework
of U-RASs to the problem of modeling and verification of complex processes enriched
with data. In the previous chapter, we introduced a formal framework and its
implementation that make use of the BPMN standard language in order to represent
the process component. In contrast, this chapter is devoted to investigating data-
aware extensions of Petri net-based processes toward their safety verification.

Specifically, by taking advantage of the fruitful tradition of employing Petri
nets as the main backbone for processes, we introduce Catalog and Object-Aware
nets (COA-nets), an enrichment of colored Petri nets (CPNs) where transitions
are equipped with guards that simultaneously inspect the content of tokens and
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query facts stored in a read-only persistent database (i.e., a catalog), and can
inject data into tokens by extracting relevant values from the database or by
generating genuinely fresh ones. This model is particularly tailored to represent
the co-evolution of multiple objects, an essential feature when dealing with real-life
processes [Fah19; Aal19; Pol+19]

The chapter is organized as follows. In Section 12.1, we give the formal definition
of COA-nets and we provide relevant examples. In Subsection 12.1.1, we show
the interesting modeling capabilities of COA-nets: two of the main features of
COA-nets are about the types of object creations supported and the capacity of
accommodating processes with multiple co-evolving case objects, so as to represent
and track one-to-one, one-to-many and many-to-many relationships among them.
In Section 12.2, we show how COA-nets can be encoded into the database-driven
mode of mcmt, i.e., that they can be seen as Universal RASs: this allows us to
import the results for Universal RASs from Chapter 4 and to study parameterized
safety verification of COA-nets using SMT-based techniques. The meta-properties
of these techniques, when applied to the verification of COA-nets, are discussed
in Section 12.4. We conclude the chapter by providing a detailed discussion on
how COA-nets provide a unifying approach for some of the most sophisticated
formalisms in this area, highlighting differences and commonalities.

12.1 The COA-net Formal Model
In this section, we present key concepts and notions used for defining catalog-
nets. Conceptually, a COA-net integrates two key components. The first is, as
customary in the artifact-centric tradition and similarly to (Universal) RASs and
DABs, a read-only persistent data storage, called catalog, to account for read-only,
parameterized data. The second is a variant of CPN, called ν-CPN [MR19], to
model the process backbone. Places in ν-CPNs carry tuples of data objects and
can be used to represent: (i) states of (interrelated) case objects, (ii) read-write
relations, (iii) read-only relations whose extension is fixed (and consequently not
subject to parameterisation), (iv) resources. As in [MR19; Fah19; Pol+19], the
net employs ν-variables (first studied in the context of ν-PNs [RVFE11]) to inject
fresh data (such as object identifiers). A distinguishing feature of COA-nets is
that transitions can have guards that inspect and retrieve data objects from the
read-only catalog. At the end of the section we discuss in more detail all the
previously mentioned characteristics using a COA-net in Figure 12.6.
Data types. We recall from Section 10.2 the notion of type, and, in line with
Chapter 3, we add the type distinction for id and value objects. We consider a
type set D as a finite set of pairwise disjoint types accounting for the different
kinds of objects in the domain of interest. We partition this finite set of types
in two disjoint subsets: the subset of id sorts Did and the subset of value sorts
Dval. Conceptually, a type in Did is called id sort and accounts for identifiers of
different kinds of objects, while a type in Dval is called value sort and accounts
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for value data types such as strings, numbers. Each type D ∈ D comes with its
own domain ∆D, and with an equality operator =D: in line with Chapter 3, we
require that when D ∈ Did, the domain ∆D is finite, whereas when D ∈ Dval, the
domain ∆D is possibly infinite. Domains of different types are pairwise disjoint.
When clear from the context, we simplify the notation of the equality operator =D
and only use =. We assume that each type D ∈ D comes with a special constant
undefD ∈ D to denote an undefined value in that domain.

Catalog. R(a1 : D1, . . . , an : Dn) is a D-typed relation schema, where R is a
relation name and ai : Di indicates the i-th attribute of R together with its data
type. When no ambiguity arises, we omit relation attributes and/or their data
types. A D-typed catalog (schema) RD is a finite set of D-typed relation schemas.
A D-typed catalog instance Cat over RD is a finite set of facts R(o1, . . . , on), where
R ∈ RD and oi ∈ ∆Di

, for i ∈ {1, . . . , n}.
We adopt some natural constraints in the catalog relations. First, we assume the

first attribute of every relation R ∈ RD to be its primary key, denoted as pk(R):
the type of a primary key needs to be an id sort. Also, the type of such an attribute
should be different from the types of other primary key attributes. Then, for any
R, S ∈ RD, R[a]→ S [id] defines that the projection R.a is a foreign key referencing
S .id, where pk(S) = id, pk(R) 6= a and D = D′, for id : D and a : D′. We also
assume that every id sort D ∈ Did determines the primary key of some n-ary
D-typed catalog relation RD, in the sense that every element s1 ∈ ∆D \ {undefD}
is the first component of some tuple (s1, . . . , sn) such that the fact RD(s1, . . . , sn)
is in the catalog instance Cat. While the given setting with constraints may seem
a bit restrictive, it is the one adopted in the most sophisticated settings where
parameterization of read-only data is tackled (e.g., [DLV16]).

Example 12.1.28

Consider a simple catalog of an order-to-delivery scenario, containing two
relation schemas. Relation schema ProdCat(p : ProdType) indicates the
product types (e.g., vegetables, furniture) available in the organisation catalogue
of products. Relation schema Comp(c : CId, p : ProdType, t : TruckType)
captures the compatibility between products and truck types used to deliver
orders; e.g. one may specify that vegetables are compatible only with types of
trucks that have a refrigerator.

Catalog queries. We fix a countably infinite set VD of typed variables with a
variable typing function type : VD → D. As query language we opt for the union of
conjunctive queries with inequalities and atomic negations that can be specified
in terms of first-order (FO) logic extended with types. This corresponds to widely
investigated SQL select-project-join queries with filters, and unions thereof.

A conjunctive query (CQ) with atomic negation Q over RD has the form

Q ::= ϕ |R(x1, . . . , xn) | ¬R(x1, . . . , xn) |Q1 ∧Q2 | ∃x.Q,
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where (i) R(D1, . . . ,Dn) ∈ RD, x ∈ VD and each xi is either a variable of type Di
or a constant from ∆Di

; (ii) ϕ ::= y1 = y2 | y1 6= y2 |ϕ ∧ ϕ | > is a condition, s.t.
yi is either a variable of type D or a constant from ∆D. CQ¬D denotes the set of
all such conjunctive queries, and Free(Q) the set of all free variables (i.e., those
not occurring in the scope of quantifiers) of query Q. CD denotes the set of all
possible conditions, Vars(Q) the set of all variables in Q, and Const(Q) the set
of all constants in Q. Finally, UCQ¬D denotes the set off all unions of conjunctive
queries over RD. Each query Q ∈ UCQ¬D has the form Q = ∨n

i=1Qi, with Qi ∈ CQ¬D.
This language is similar in spirit to the query language employed in the DAB
data schema (cf. Subsection 11.2.1), but it presents some differences (e.g., here
there is no repository relation, but we will see in Subsection 12.2.1 that, in some
sense, places can be interpreted, to some extent, as repository relations, or, using
the U-RAS nomenclature, artifact relations).

A substitution for a set X = {x1, . . . , xn} of typed variables is a function θ : X →
∆S , such that θ(x) ∈ ∆type(x) for every x ∈ X. An empty substitution is denoted as
〈〉. A substitution θ for a query Q, denoted as Qθ, is a substitution for variables in
Free(Q). An answer to a query Q in a catalog instance Cat is a set of substitutions
ans(Q,Cat) = {θ : Free(Q)→ Val(Cat) | Cat, θ |= Q}, where Val(Cat) denotes the
set of all constants occurring in Cat and |= denotes standard FO entailment.

Example 12.1.29

Consider the catalog of Example 12.1.28. Query ProdCat(p) retrieves the
product types p present in the catalog, whereas given a product type value veg,
query ∃c.Comp(c, veg, t) returns the truck types t compatible with veg.

COA-nets. We use in the following the standard notions related to multisets
presented in Section 10.2. We recall that, given a set A, the set of multisets over A,
written A⊕, is the set of mappings of the form m : A → N, and given a multiset
S ∈ A⊕ and an element a ∈ A, S(a) ∈ N denotes the number of times a appears in
S. We write an ∈ S if S(a) = n. We also consider the usual operations on multisets
defined in Section 10.2. In what follows, with slight abuse of notation we assume
that functions type, Vars and Const are extended to account for sets, tuples and
multisets of variables and constants. For example, Vars({x, 1, a, y, z}) = {x, y, z}
and Const({x, 1, a, y, z}) = {1, a}.

We now define COA-nets, extending ν-CPNs [MR19] with the ability of querying
a read-only catalog. As in CPNs, each COA-net place has a color type, which
corresponds to a data type or to the cartesian product of multiple data types
from D. Tokens in places are referenced via inscriptions – tuples of variables and
constants. We denote by ΩA the set of all possible inscriptions over a set A. To
account for fresh external inputs, we employ the well-known mechanism of ν-Petri
nets [RVFE11] and introduce a countably infinite set ΥD of S-typed fresh variables,
where for every ν ∈ ΥD, we have that ∆type(ν) is its domain (this domain is finite



12. Catalog Object-Aware Nets 277

if the type of ν is an id sort, otherwise it provides an unlimited supply of fresh
values). We fix a countably infinite set of D-typed variable XS = VD ]ΥD as the
disjoint union of “normal" (VD) and fresh (ΥD) variables.

Definition 12.1.1 (COA-net). A D-typed COA-net N over a catalog schema
RS is a tuple (D,RD, P, T, Fin, Fout, color, guard), where:

1. P and T are finite sets of places and transitions, s.t. P ∩ T = ∅;
2. color : P → KD is a place typing function, where KD is a set of all possible

cartesian products D1 × . . .×Dm, s.t. Di ∈ D, for each i = 1, . . . ,m;
3. Fin : P × T → Ω⊕VD is an input flow, s.t. type(Fin(p, t)) = color(p) for every

(p, t) ∈ P × T ;
4. Fout : T ×P → Ω⊕XS∪∆D

is an output flow, s.t. type(Fout(t, p)) = color(p) for
every (t, p) ∈ T × P ;

5. guard : T → {Q ∧ ϕ | Q ∈ UCQ¬D, ϕ ∈ CD} is a partial guard assignment
function, s.t., for every guard(t) = Q ∧ ϕ and t ∈ T , the following holds:
(a) Vars(ϕ) ⊆ InVars(t), where InVars(t) = ∪p∈PVars(Fin(p, t));
(b) OutVars(t) \ (InVars(t) ∪ ΥD) ⊆ Free(Q) and Free(Q) ⊆ Vars(t),

where OutVars(t) = ∪p∈PVars(Fout(t, p)) and Vars(t) = InVars(t) ∪
OutVars(t).

Here, the role of guards is twofold. On the one hand, similarly, for example, to
CPNs, guards are used to impose conditions (using ϕ) on tokens flowing through
the net. On the other hand, a guard of transition t may also query (using Q)
the catalog in order to propagate some data into the net. The acquired data
may be still filtered by using InVars(t). Note that in condition (b) of the guard
definition we specify that, if there are some variables (excluding the fresh ones)
in the outgoing arc inscriptions that do not appear in InVars(t), then these are
the free variables of Q. Such variables, in turn, are used in the net to propagate
data from the catalog via query answers. Moreover, it is required that all free
variables of Q are exhaustively covered by the variables in the input and output
arcs. This condition essentially forbids to have queries producing answers that
are (partially) not going to be used in the net. As customary in high-level Petri
nets, using the same variable in two different arc inscriptions amounts to checking
the equality between the respective components of such inscriptions. For every
transition t ∈ T , we also define •t = {p ∈ P | (p, t) ∈ dom(Fin)} as a pre-set of
t and t• = {p ∈ P | (t, p) ∈ dom(Fout)} as a post-set of t.1

Semantics. The execution semantics of a COA-net is similar to the one of CPNs.
Thus, as a first step we introduce the standard notion of net marking. Formally,
a marking of a COA-net N = (D,RD, P, T, Fin, Fout, color, guard) is a function
m : P → Ω⊕D, so that m(p) ∈ ∆⊕color(p) for every p ∈ P . We write 〈N,m,Cat〉
to denote COA-net N marked with m, and equipped with a read-only catalog
instance Cat over RS .

1dom(f) denotes a domain of function f .
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The firing of a transition t in a marking is defined w.r.t. a so-called binding
for t defined as σ : Vars(t) → ∆D. Note that, when applied to (multisets of)
tuples, σ is applied to every variable singularly. For example, given σ = {x 7→
1, y 7→ a}, its application to a multiset of tuples ω = {〈x, y〉2, 〈x, b〉} results
in σ(ω) = {〈1, a〉2, 〈1, b〉}.

Next, we define when a transition can be called enabled. Essentially, a transition
is enabled with a binding σ if the binding selects data objects carried by tokens
from the input places and the read-only catalog instance, so that the data they
carry make the guard attached to the transition true.
Definition 12.1.2. A transition t ∈ T is enabled in a markingm and a fixed catalog
instance Cat, written m[t〉Cat, if there exists binding σ satisfying the following:
(i) σ(Fin(p, t)) ⊆ m(p), for every p ∈ P ; (ii) σ(guard(t)) is true; (iii) for every
fresh variable ν ∈ ΥD ∩ OutVars(t), we have that σ(ν) ∈ ∆type(ν) \ Val(m);2
(iv) σ(x) = θ(x), for θ ∈ ans(Q,Cat), x ∈ (OutVars(t) \ InVars(t)) ∩ Vars(Q) and
query Q from guard(t).3

In the definition, point (iii) constraints the possible bindings for fresh variables.
If ∆type(ν) of some fresh variable ν is the domain of an id sort (i.e., if the type of
the variable ν is an id sort), it may be the case that the identifiers contained in the
catalog for that type are all present in the current marking; in this extreme case,
(iii) indicates that the transition cannot fire. If instead ∆type(ν) is a the domain of
a value sort, there is always a way to pick a suitable, fresh value for ν.

When a transition t is enabled, it may fire. Next we define what are the effects
of firing a transition with some binding σ.
Definition 12.1.3. Let 〈N,m,Cat〉 be a marked COA-net, and t ∈ T a transition
enabled in m and Cat with some binding σ. Then, t may fire producing a new
marking m′, with m′(p) = m(p)− σ(Fin(p, t)) + σ(Fout(t, p)) for every p ∈ P . We
denote this as m[t〉Catm′ and assume that the definition is inductively extended to
sequences τ ∈ T ∗.

For 〈N,m0, Cat〉 we useM(N) = {m | ∃τ ∈ T ∗.m0[τ〉Catm} to denote the set
of all markings of N reachable from its initial marking m0.
Definition 12.1.4 (COA-net Boundedness). Given b ∈ N, place p in a marked
COA-net 〈N,m0, Cat〉 is called b-bounded if |m(p)| ≤ b, for every marking m ∈
M(N). The same net is called bounded with bound b if every place p ∈ P is
b-bounded.

Unboundedness in COA-nets can arise due to various reasons: classical
unbounded generation of tokens, but also uncontrollable emission of fresh values
with ν-variables or replication of data values from the catalog via queries in
transition guards.

2Here, with slight abuse of notation, we define by Val(m) the set of all values appearing in m.
3This condition stipulates that the binding needs to “agree” on the result of Q when it comes

to the variables of Q that are used in the output inscriptions of t, and have not been already
bound by the variables in the input inscriptions of the same transition.
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(b) An unbounded variant of the net in Fig-
ure 12.1a.

Figure 12.1: Boundedness in COA-nets with identical catalog instances containing
letters from a to z.

Example 12.1.30

Figure 12.1 demonstrates two almost identical marked COA-nets, with a catalog
fixing pairs in a binary relation R whose first component defines the primary
key for R, and the second component is a string attribute. The net represented
in Figure 12.1a is bounded. This can be seen considering that the guard of t
extracts strings stored in the second component of R and compares them to
those in place p1, consequently allowing t to fire only if those values coincide.
Moreover, after each firing, the token stored in p1 is consumed, bringing back
to p1 a token carries a “locally fresh” string value generated using νx. Being
locally fresh, such a value must be different from any string value present p1
and p2. This means that, sooner or later, a string not contained in the second
component of R (i.e., different from a, b, and c) will need to be selected when
binding νx. When this happens, t will not fire anymore. All in all, this means
that the marked net will never assign more than one token to p1, and no more
than three tokens to p2 (where three is indeed the number of distinct string
values contained in the second component of R). Differently from the marked
net discusses so far, its variant shown Figure 12.1b is unbounded. In this
case, the loop relating p1 and t preserves the bound of one token for p1, no
restrictions are imposed on guard(t) on the token consumed from p1. This,
in turn, indicates that t can fire unboundedly many times, inflating p2 with
unboundedly many tokens, each carrying one of the three string values a, b, and
c extracted from the catalog. This shows an example of unboundedness arising
even if the number of values simultaneously present in the current marking
stays bounded.

Execution semantics. The execution semantics of a marked COA-net
〈N,m0, Cat〉 is defined in terms of a possibly infinite-state transition system in which
states are labeled by reachable markings and each arc (or transition) corresponds to
the firing of a transition in N with a given binding. The transition system captures
all possible executions of the net, by interpreting concurrency as interleaving.
Technically, let 〈N,m0, Cat〉 be a marked COA-net with catalog instance Cat. Then
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to any string value that is not present in current net marking.
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Figure 12.2: Transition system capturing the execution semantics of the marked net
from Figure 12.1a. Symbol ? denotes a string value different from a, b, c, d (there exist
infinitely many such ?).

its execution semantics is captured by transition system ΛN = (S, s0,⇒), where:
• S is a possibly infinite set of markings over N ;
• ⇒⊆ S × T × S is a T -labelled transition relation between pairs of markings;
• S and ⇒ are defined by simultaneous induction as the smallest sets satisfying

the following conditions: (i) m0 ∈ S; (ii) given m ∈ S, for every transition t ∈ T ,
binding σ and marking m′ over N , if m[t〉Catm′, then m′ ∈ S and m t⇒ m′.
As pointed out before, we are interested in analysing a COA-net irrespectively

of the actual content of the catalog. Hence, in the following when we mention a
(catalog-parameterized) marked net Nm0 without specifying how the catalog is
instantiated, we actually implicitly mean the infinite set of marked nets 〈N,m0, Cat〉
for every possible instance Cat defined over the catalog schema of N .

Example 12.1.31

Figure 12.2 shows the transition system capturing the execution semantics of
the marked net from Figure 12.1a, whose initial marking m0 assigns to p1 one
token carrying the string value a. For ease of reading, we omit the catalog
instance and arc labels. Notice that, although our net is bounded, its transition
system contains infinitely many states due to the presence of the ν-variable νx
that, in every firing, can be bound to any string value that is not present in
current net marking.



12. Catalog Object-Aware Nets 281

{p1 7! [a, b]}

{p1 7! [b, c],

p2 7! [a]}
{p1 7! [b, aa],

p2 7! [a]}
{p1 7! [b, f],

p2 7! [a]}
{p1 7! [a, f],

p2 7! [b]}
• • •

Figure 2: A transition system of a net from Figure 2

t

p

⌫

(a) Object generating emitter

t

[Q ^ ']
p1

pk

• • •
p

!
1

!k

!

(b) Catalog-based object constructor

Figure 3: Object creation patterns. In Figure 3b, Free(Q) 6= ; and Vars(!) ✓ Free(Q).

focus on specifying patterns that cover generation and management of multiple case

objects.

When choosing to opt for a setting in which management of case objects is no less

important than correct representation of control flow, it is crucial to ensure that such

setting lends enough of expressive power for creating, deleting or updating the case

objects as well as takes into account their types and relations between each other. In
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on top of a catalog. The first case is rather limited only to emitter transitions and

enforces the concept of identity over created objects (that is, every object created with

this pattern is identified with a unique element taken from the domain of the related

variable from ⌥D). The related object generating emitter pattern is demonstrated in
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(b) Catalog-based object constructor.

Figure 12.3: Object creation patterns. In Figure 12.3b, Free(Q) 6= ∅ and Vars(ω) ⊆
Free(Q).

12.1.1 Modeling Capabilities
Object Creation Patterns

Given that COA-net models can conceptually address two seemingly disjoint
dimensions, one may wonder about the modeling capabilities of the COA-net
formalism and, in particular, more recurring modeling patterns that could be of
relevance for domain experts that would like to use COA-nets for representing data-
and process-aware information systems. While there are already works that tackle
pattern-based modeling approaches using various classes of Petri nets (see, for
example, [RAH16; ASW13]), we focus on specifying patterns that cover generation
and management of multiple case objects.

When choosing to opt for a setting in which management of case objects is no
less important than correct representation of control flow, it is crucial to ensure that
such setting lends enough of expressive power for creating, deleting or updating
the case objects as well as takes into account their types and relations between
each other. In COA-nets, objects are represented as typed tokens. Introducing a
new object to a net, apart from using a traditional token generation mechanism,
can be done by either using fresh variables or by materializing such object based
on results of a query performed on top of a catalog.

The first case is rather limited only to emitter transitions and enforces the
concept of identity over created objects (that is, every object created with this
pattern is identified with a unique element taken from the domain of the related
variable from ΥD). The related object generating emitter pattern is demonstrated
in Figure 12.3a. As an example of its application in practice, one can think of
an emitter transition that allows to generate (fresh) identifiers of unboundedly
many orders in some order-to-delivery process.

The second catalog-based object constructor pattern is shown in Figure 12.3b.
Upon firing of transition t, it extracts some relevant data from the catalog using
query Q in the guard, and then binds extracted values to variables in ω. This allows
to create objects that can potentially coalesce control flow data (taken from some
of the incoming places of t) with information available in the persistent storage.
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Figure 12.5: A pattern for creating objects involved in a one-to-many relationship. Here,
ωc contains only variables taken from Vars(ωd), Vars(ωp) and Free(Q).

A simple use case for this pattern can be a direct follow-up of the order creation
example. Assuming that our net contains order identifiers, previously generated
with emitter new order, and the catalog is the one described in Example 12.1.28,
we can use the former in order to generate new objects specifying an item (of a
certain type) being assigned to an order. Figure 12.4 shows that the creation of
items is not modeled using an explicit ν-variable, but is instead simply obtained
by the add item transition which enriches a selected order token with the product
type taken from the catalog using the query assigned to add item.

As a side remark, we briefly comment on the overall modeling power of the
catalog. In general, it is common to have processes that only alter a portion of all
the data they have access to (think, for example, of product types, employees and
carriers in an order-to-cash process), or processes that by design can only access
some (possibly structured) data in a read-only mode. Given that data objects can
also be related to one another, this naturally calls for introducing a static storage
to keep track of such read-only relations. In our framework, these relations may
be represented with special read-only places (as it is essentially done in [MR19]).
However, using places for read-only relations would not naturally allow one to
capture key and foreign key constraints, nor to distinguish the query language
used to inspect them from that used for normal places.4 And even if it were the
case, then resulting model will be conceptually too confusing. This is the main
reason for having a separate representation.

4There are also technical results on verification clearly showing that there is a difference between
the way read-only and read-write relations can be constrained and queried [Cal+20b].
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Object Relationship Patterns

Let us now focus on patterns that help modeling management of relations or, better
said, dependencies between case objects. In particular, we show how to address
one-to-many relations using the language of COA-nets. We deliberately avoid the
trivial one-to-one case as well as the case of many-to-many relations. The latter,
however, can be easily represented by simply reifying the relation in a new separate
object and producing a consequent pair of one-to-many relations, each of which
keeping the new object on the “one” side. In the context of Petri nets, this approach
is very much in line with the one recently proposed in [Fah19].

Whenever we want to create an object that is meant to participate in a one-to-
many relationship on the “many” side, it has to carry a data of a parent object
it is related to. Although such data can be of any type, we suggest to bring
its complexity to a bare minimum and use object identifiers whenever possible.
Figure 12.5 demonstrates a schematic overview of a generic COA-net for this case.
As opposed to object generation patterns, it is crucial to induce the conceptual
separation between different subnets that contribute to the creation of case objects
and that, at the same time, show their lifecycles. Thus, we use three subnets: two
show the lifecycle of the parent (the ‘one’ side) and child (the ‘many’ side) objects
taking part in the one-to-many relation, respectively stored in parent and child places;
the third subnet, on top of the query Q, is used as an independent data supplier with
its own potentially complex workflow. 5 Notice that the last subnet is essentially a
combination of object generating emitters and catalog-based constructors. Although
it is not explicitly shown in Figure 12.5, the parent subnet considers the parent
object lifecycle including the creation step (which can be realized using one of the
patterns from Figure 12.3, proviso that newly generated parent objects are duly
equipped with unique identifiers as suggested above), whereas the creation of child
objects is instrumented with transition t. Notice also that both the catalog query
and the data subnet can be avoided. However, that, in turn, requires the modeler to
use ν-variables in ωc. One may also wonder whether given the nature of the catalog
storage, dependencies between relations therein should be also taken into account
and/or can be reflected in the net model. The answer on this matter becomes
evident when looking into the nature of the queries. Strictly speaking, query answers
do not carry over any constraints imposed on the source database. Thus, data
values that the modeler gets in the net are just copies of those in the catalog.

As an example of the pattern discussed above, one may use the one from
Figure 12.4. Here, each newly created item carries a reference to its owning order,
and thus models the one-to-many relation between orders and items. Thanks to
the multiset semantics of Petri nets, it is still possible to create multiple items
having the same product type and owning order. However, it is not possible to
track the evolution of a specific item, since there is no explicit identifier carried by
item tokens. This can be always changed by adding to the catalog another relation

5By independence we imply that the data coming from the data subnet are not meant to create
any additional dependencies.
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Figure 6: A COA-net (its catalog is in Example 1). In the picture, Item and Truck are compact representa-

tions for ProdType⇥ Order and Plate⇥ TruckType respectively. The top blue part refers to orders,

the central orange part to items, and the bottom violet part to delivery trucks.

tokens assigned to dedicated places with the initial marking, and their amount initially

present in the net should never change (that is, one shall never create new or destroy

any of the already existing resources). A natural example of resources are shipping

company employees involved in handling orders.

We conclude with an example that summarizes all the main features of COA-nets.

Example 5. Starting from the catalog in Example 1, Figure 6 shows a simple, yet

sophisticated example of COA-net capturing the following order-to-delivery process.

Orders can be created by executing the new order transition, which uses a ⌫-variable

to generate a fresh order identifier. A so-created, working order can be populated with

items, whose type is selected from those available in the catalog relation ProdCat .

Each item then carries its product type and owning order. When an order contains at

least one item, it can be paid. Items added to an order can be removed or loaded in
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Figure 12.6: A COA-net (its catalog is in Example 12.1.28). In the picture, Item and
Truck are compact representations for ProdType× Order and Plate× TruckType
respectively. The top blue part refers to orders, the central orange part to items, and the
bottom violet part to delivery trucks.

Item(c : IId, n : Descr, p : ProdType) that stores information about items by
capturing their identifiers, short content descriptions and product types, which, in
turn provides information for adding identity to items in the net.

Lastly, we would like to comment on one more possible usage of complex objects
in COA-nets. Quite often, processes require a presence of resources, both structured
and unstructured, which are fixed in the process model domain. Our formalism lends
its expressive power to account for both types. Resources should be represented
as tokens assigned to dedicated places with the initial marking, and their amount
initially present in the net should never change (that is, one shall never create new
or destroy any of the already existing resources). A natural example of resources
are shipping company employees involved in handling orders.

We conclude with an example that summarizes all the main features of COA-nets.

Example 12.1.32

Starting from the catalog in Example 12.1.28, Figure 12.6 shows a simple, yet
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sophisticated example of COA-net capturing the following order-to-delivery
process. Orders can be created by executing the new order transition, which uses
a ν-variable to generate a fresh order identifier. A so-created, working order
can be populated with items, whose type is selected from those available in the
catalog relation ProdCat. Each item then carries its product type and owning
order. When an order contains at least one item, it can be paid. Items added to
an order can be removed or loaded in a compatible truck. Unpaid items added
to a working order can be always removed, whereas paid ones can be loaded in
a compatible truck. The set of available trucks, indicating their plate numbers
and types, is contained in a dedicated pool place. Trucks can be borrowed from
the pool and placed in house. An item can be loaded into a truck if its owning
order has been paid, the truck is in house, and the truck type and product type
of the item are compatible according to the Comp relation in the catalog. Items
(possibly from different orders) can be loaded in a truck, and while the truck is
in house, they can be dropped, which makes them ready to be loaded again. A
truck can be driven for delivery if it contains at least one loaded item. Once the
truck is at its destination, some items may be delivered (this is simply modeled
non-deterministically). The truck can then either move, or go back in house.

Example 12.1.32 showcases various key aspects related to modeling data-aware
processes with multiple case objects using COA-nets that have been discussed above.
Using the pattern from Figure 12.5, we demonstrate that whenever an object is
involved in a many-to-one relation from the “many” side, it then becomes responsible
of carrying the object to which it is related. This is the case for every item carrying
a reference to its owning order and, once loaded into a truck, a reference to the truck
plate number. One can also see that the above example manipulates three different
object types that have been previously discussed in this section. Unboundedly many
case objects representing orders can be genuinely created using the object generating
emitter as it is demonstrated in Figure 12.4. The (finite) set of trucks available in
the domain is instead fixed in the pool place in Figure12.6 by the initial marking,
and represents a pool of resources that can change state but are never destroyed nor
created. Finally, objects representing items can be arbitrarily created and destroyed
using the pattern from Figure 12.5. Since items are in one-to-many relation with
orders on the “many” side, their creation is not modeled using an explicit ν-variable,
but is instead simply obtained by the add item transition which acquires product
types from the catalog using the query in guard(add item). This also demonstrates
that, unlike orders and trucks, items do not require any identifiers as the scenario
does not need either to track their lifecycle or to relate them to other child objects.
Thus, one may also assert that ν-variables are only necessary when the COA-net
needs to handle the arbitrary creation of objects that are referenced by other objects
or when object identifiers are explicitly required in the modeling scenario.
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12.2 From COA-nets to MCMT
We now report on the operational encoding of COA-nets into the verification
language supported by the mcmt model checker, showing that the various modeling
constructs of COA-nets have a direct counterpart in the database-driven mode of
mcmt (cf. Chapter 9), and in turn enabling formal analysis and verification.

Formally, this operational encoding, in fact, implies that COA-nets can be
directly modeled as Universal RASs (cf. Section 3.2.2): this consideration will be
crucial in order to import all the verification results we developed for U-RASs in
Part I. However, we prefer to exhibit an operational, practice-oriented encoding
of COA-nets into the mcmt syntax, instead of a formal translation into the
theoretical framework of U-RASs, since COA-nets have concrete applications in
the context of data-aware business processes modeling and verification: in view of
those applications, the support of a tool-based language is certainly more appealing
and useful, because it also practically shows how to manually write specification
files modeling COA-nets that are ready to be verified by mcmt.

We recall that mcmt is founded on the theory of array-based systems [GR10b;
GR10a].

12.2.1 Universal RASs: a Summary
We stressed several times in the course of this thesis that an array-based system
describes the evolution of array data structures of unbounded size. The content
of an array a changes over time, and it is represented by a function variable,
called array variable, which defines for each index what is the value stored in the
corresponding cell. Its content changes when moving from one state to another,
reflecting the intended manipulation of the array. We assume that the reader is
now familiar with the notions of state formula, initial formula I(a) and transition
formula τ(a, a′). The verification problems we deal with here is the usual one, i.e.
the one of unsafety verification: it checks whether the evolution induced by τ over
a starting from a configuration in I(a) eventually reaches an unsafe configuration
described by a state formula K(a). U-RASs, introduced in Section 3.2.2, are an
extension of array-based systems that comprises the artifact-centric model, in the
style of [LDV17]. We are in particular interested in applying to COA-nets the
results from the sophisticated formalism of U-RASs.

In U-RASs we know that a relational artifact system accesses a read-only
database with keys and foreign keys (cf. the definition of catalog for COA-nets). In
addition, the U-RAS operates over a set of evolving relations possibly containing
unboundedly many updatable entries (cf. tokens in places of COA-nets). As in
the case of DB schemas for U-RASs, the COA-nets catalog is treated as a rich,
background theory for storing read-only data: hence, it can be thought again as a
more sophisticated version of the element sort in basic array systems. In U-RASs,
each evolving relation (i.e., ‘artifact relations’) is treated as a set of arrays, where
each array accounts for one column of the corresponding evolving relation; a tuple in
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each evolving relation is identified when accessing with the same index all the arrays
corresponding to that relation. Tuples of evolving relations are in some sense similar
to tokens carrying data in places of COA-nets. This intuition is instructive since it
helps the reader to understand how COA-nets places with tokens carrying data can
be equivalently represented, i.e. as artifact relations with tuples storing data.

As shown in Section 4.3, U-RASs can be verified by using the same verifica-
tion machinery employed with RASs, i.e. the backward reachability procedure
BReachRAS, with the proviso of preventively reducing U-RASs to RASs. Unfor-
tunately, this reduction only partially preserves the meta-properties of the RAS
verification procedure, but we will see that for the scope of our application to COA-
nets, this partial preservation is still significant. Indeed, as it will be discussed below,
we will use BReachRAS to formally verify also COA-nets, once suitably encoded
into the mcmt syntax. The next section is devoted to showing this encoding: we
remind the reader that in order to support the representation of read-only databases
(the catalog) and the extension of backward reachability BReachRAS, one needs to
adopt the module of mcmt called database-driven mode and extensively described
in Chapter 9, which is the one used here too.

12.2.2 Encoding COA-nets into MCMT
In this section, we show how to encode a COA-net Nm0, where N =
(D,RD, P, T, Fin, Fout, color, guard) into mcmt specification in the database-driven
mode: for details on the database-driven mode of mcmt, see Chapter 9. The
translation is split into two phases. First, we tackle the type domain and catalog:
we declare them using the mcmt syntax for DB schemas. Then, we present a
step-wise encoding of the COA-net elements and the net semantics into the mcmt
syntax for U-RASs (cf. Chapter 9).
Data and schema translation. We start by describing how to translate static
data-related components. Let D = {D1, . . . ,Dnd

}. Each data type Di is encoded
in mcmt with declaration

:smt (define_type Di)

For each declared type D mcmt implicitly generates a special NULL constant
indicating an empty/undefined value of D. As it has been already mentioned in
Section 12.1, every type has an equality operation defined for it.

To represent the catalog relations of RD = {R1, . . . , Rnr} in mcmt, we proceed
as follows. Recall that in the catalog every relation schema has n+1 typed attributes
among which some may be foreign keys referencing other relations, its first attribute
is a primary key, and, finally, primary keys of different relation schemas have different
types. With these conditions at hand, we adopt the functional characterization of
read-only databases for Array-Based Artifact Systems studied in Section 3.1. For
every relation Ri(id, A1, . . . , An) with pk(R) = {id}, we introduce unary functions
that correctly reference each attribute of Ri using its primary key. More specifically,
for every Aj (j = 1, . . . , n) we create a function fRi,Aj

: ∆type(id) → ∆typeAj
. If
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Figure 8: A generic COA-net transition (rij and roj are natural numbers)

Places. Given that, during the net execution, every place may store unboundedly many

tokens, we need to ensure a potentially infinite provision of values to places p using

unbounded arrays. To this end, every place p 2 P with color(p) = D1 ⇥ . . . ⇥ Dk

is going to be represented as a combination of arrays p1, . . . , pk, where a special index

type Pind (disjoint from all other types) with domain �Pind is used as the array index

sort and D1, . . . , Dk account for the respective target sorts of the arrays.6 In MCMT,

this is declared as

:local p_1 D1 ... :local p_k Dk

Then, intuitively, we associate to the j-th token (v1, . . . , vk) 2 m(p) an element j 2
�Pind

and a tuple (j, p1[j], . . . , pk[j]), where p1[j] = v1, . . . , pk[j] = vk. Here, j is

an “implicit identifier” of this tuple in m(p). Using this intuition and assuming that

there are in total n control places, we represent the initial marking m0 in two steps (a

direct declaration is not possible due to the language restrictions of MCMT). First, we

symbolically declare that all places are by default empty using the following MCMT

initialisation statement

:initial

:var x

:cnj init_p1

...

init_pn

Here, cnj represents a conjunction of atomic equations that, for ease of reading, we

organized in blocks, where each init_pi specifies for place pi 2 P with color(pi) =

D1 ⇥ . . . ⇥ Dk that it contains no tokens. This is done by explicitly “nullifying” all

6MCMT has only one index sort, but, as shown in [35], there is no loss of generality in doing that.
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Figure 12.7: A generic COA-net transition (rij and roj are natural numbers)

Aj is referencing an identifier of some other relation S (i.e., Ri [Aj]→ S [id]), then
fRi,Aj

represents the foreign key referencing to S. Note that in this case the types
of Aj and S.id should coincide. In mcmt, assuming that D_Ri_id = type(id)
and D_Aj = type(Aj), this is captured using statement

:smt (define Ri_Aj ::(-> D_Ri_id D_Aj))

All the constants appearing in the net specification must be properly defined.
Let C = {v1, . . . , vnc} be the set of all constants appearing in N . C is defined as⋃
t∈T Const(guard(t))∪ supp(m0)∪⋃t∈T,p∈P Const(Fout(t, p)). Then, every constant

vi ∈ C of type D is declared in mcmt as
:smt (define vi ::D)

As shown in Section 9.3, the code section needed to make mcmt aware of
the fact that these elements have been declared to describe a read-only database
schema is as follows (notice that the last declaration is required when using mcmt
in the database-driven mode):

:db_driven
:db_sorts D1,...,Dnd
:db_functions R1_A1,...,Rnr_An
:db_constants v1,...,vnc
:db_relations / / l e a v e e m p t y

Here, without loss of generality we assume that n is the index of the last attribute
of relation Rnr .

Remark 12.2.1. The translation of the catalog relations of a COA-net into mcmt is
conceptually the same as the one defined for DABs and implemented in delta-BPMN.
Indeed, the definitions of the catalog of a DAB and of the catalog of a COA-net are
completely analogous and, as briefly mentioned above, both translations rely on the
functional characterization ofrelational databases for Array-Based Artifact Systems
studied in Section 3.1. This means, for example, that both an n + 1-relation R1
in the catalog of a DAB and an n+ 1-relation R2 in the catalog of a COA-net are
translated into a set of n unary functions that map the id-attribute of Ri to the
other n attributes of Ri. The implementation in mcmt follows the instructions
carefully described in Chapter 9 and it is identical for both DABs and COA-nets.
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Places. Given that, during the net execution, every place may store unboundedly
many tokens, we need to ensure a potentially infinite provision of values to places
p using unbounded arrays. To this end, every place p ∈ P with color(p) =
D1 × . . . × Dk is going to be represented as a combination of arrays p1, . . . , pk,
where a special index type Pind (disjoint from all other types) with domain ∆Pind

is used as the array index sort and D1, . . . ,Dk account for the respective target
sorts of the arrays.6 In mcmt, this is declared as

:local p_1 D1 ... :local p_k Dk

Then, intuitively, we associate to the j-th token (v1, . . . , vk) ∈ m(p) an element
j ∈ ∆Pind

and a tuple (j, p1[j], . . . , pk[j]), where p1[j] = v1, . . . , pk[j] = vk. Here, j
is an “implicit identifier” of this tuple in m(p). Using this intuition and assuming
that there are in total n control places, we represent the initial marking m0 in
two steps (a direct declaration is not possible due to the language restrictions of
mcmt). First, we symbolically declare that all places are by default empty using
the following mcmt initialisation statement

:initial
:var x
:cnj init_p1

...
init_pn

Here, cnj represents a conjunction of atomic equations that, for ease of reading, we
organized in blocks, where each init_pi specifies for place pi ∈ P with color(pi) =
D1 × . . .×Dk that it contains no tokens. This is done by explicitly “nullifying” all
components of each possible token in pi, written in mcmt as

(= pi_1[x] NULL_D1)(= pi_2[x] NULL_D2)...(= pi_k[x] NULL_DK)

The initial marking is then injected with a dedicated mcmt code that populates
(through a transition) the place arrays, initialized as empty, with records representing
tokens therein. We come back to the second step of the initial marking encoding
after having discussed the transition encoding.

Remark 12.2.2. The translation of COA-net places into mcmt is completely
analogous to the translation of repository relations of DABs into mcmt: indeed,
theoretically, both COA-net places and DAB repository relations are translated
into ‘artifact relations’, i.e., sets of artifact components (array variables), of RASs.
The main idea behind this is that places contain ‘data tuples’ as tokens, which
correspond to ‘data tuples’ contained by repository relations in DABs: since the
quantity of ‘data tuples’ in places or repository relations is in principle unbounded,
they cannot be represented through a set of variables, but they need a data structure
that is unbounded in size. This is the reason of using (a set of) arrays of (possible
unbounded) size n, where indexes are used as identifiers of the ‘data tuples’ of

6mcmt has only one index sort, but, as shown in [Ghi+20b], there is no loss of generality in
doing that.
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interest. If, instead of unboundedly many tuples, one is interested in considering
only bounded information, then a set of variable suffices: this is exactly what
happens for COA-net bounded places or for DAB ‘case variables’ , which both
correspond to artifact variables of RASs.

Transition enablement and firing. We now discuss how to check for transition
enablement and compute the effect of a transition firing in mcmt. To this end, we
consider the generic, prototypical COA-net transition t ∈ T depicted in Figure 12.7.
The enablement of this transition is subject to the following conditions:
(FC1) there is a binding σ that correctly matches tokens in the places to the

corresponding inscriptions on the input arcs (i.e., each place pini provides
enough tokens required by a corresponding inscription F (pini, t) = ~ini), and
that computes new and possibly fresh values that are pairwise distinct from
each other as well as from all other values in the marking;

(FC2) the guard guard(t) is satisfied under the selected binding.
For simplicity, we assume here that Q ∈ CQ¬D and it is in Prenex normal
form.Whenever Q ∈ UCQ¬D, such that Q = ∨n

i=1Qi, with Qi ∈ CQ¬D, one needs
to create n-variants of transition t, and suitably modify input and output arcs
(together with their inscriptions) as well as transition guards, each of which will
contain only one Qi.

In mcmt, t is captured with a transition statement consisting of a guard G

and an update U as follows
:transition
:var x,x1,...,xK,y1,...,yN
:var j
:guard G
... U ...

Here every x (resp., y) represents an existentially quantified index variable
corresponding to variables in the incoming inscriptions (resp., outgoing inscriptions),
K = ∑

j∈{1,...,k} rij, N = ∑
j∈{1,...,n} roj and j is a universally quantified variable,

that will be used for computing bindings of ν-variables and updates. In the following
we are going to elaborate on the construction of the mcmt transition statement. We
start by discussing the structure of G which in mcmt is represented as a conjunction
of atoms or negated atoms and, intuitively, addresses all the conditions stated above.

First, to construct a binding that meets condition (FC1), we need to make sure
that every place contains enough of tokens that match a corresponding arc inscription.
Using the array-based representation, for every place pini with Fin(pini, t) = rii · ~ini
and k′ = |color(pini)|, we can check this with a formula

ψpini
:= ∃x1, . . . ,xrii .

∧
j1,j2∈{x1,...,xrii},j1 6=j2,

l∈{1,...,k′}

pini,l[j1] = pini,l[j2] ∧
∧

l∈{1,...,k′}
pini,l[x1] 6= NULL_Dl

Here, the first big conjunct is used to check that there are rii identical tokens
available in the array-based representation of pini. Given that variables representing
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existentially quantified index variables are already defined, in mcmt this is encoded
as conjunctions of atoms

(= pini_l[j1] pini_l[j2])

and atoms
not(= pini_l[x1] NULL_Dl)

where NULL_Dl is a special null constant of type of elements stored in pini_l. All
such conjunctions, for all input places of t, should be appended to G.

We now define the condition that selects proper indexes in the output places so
as to fill them with the tokens generated upon transition firing. To this end, we
need to make sure that all the q declared arrays aw of the system7 (including the
arrays pouti corresponding to the output places of t) contain no values in the slots
marked by y index variables. This is represented using a formula

ψpouti := ∃y1, . . . ,yrii .
∧

j∈{y1,...,yrij},w∈{1,...q}
aw[j] = NULL_Dw,

which is encoded in mcmt similarly to the case of ψpini
.

Moreover, when constructing a binding, we have to take into account the case of
arc inscriptions causing implicit “joins” between the net marking and data retrieved
from the catalog. This happens when there are some variables in the input flow
that coincide with variables of Q, i.e., Vars(Fin(pinj, t)) ∩ Vars(Q) 6= ∅. See [] for
the technical details on how to formalize this case.

We now incorporate the encoding of condition (FC2). Every variable d of Q
with type(d) = D has to be declared in mcmt as an existential variable as follows

:eevar d D

Notice that such variables appear in Q and are used for querying the catalog.
As extensively argued in Subsection 1.3.1 and shown in Chapter 4, whenever
querying over a relational database is required, the management of such variables
becomes one of the most crucial points: these existentially quantified variables
get eliminated in the backward reachability procedure used by mcmt whenever it
verifies a property. Concretely speaking, in the database-driven module of mcmt,
in order to manage such d variables one needs to rely on the advanced quantifier
elimination techniques studied in Part II.

In order to represent the guard Q ∧ ϕ in the mcmt syntax, we need to adopt
the functional representation of DB schemas (cf. Section 3.1). To do so, we call an
extended guard a guardQe∧ϕe in which every relation R has been substituted with its
functional counterpart and every variable d in ϕ has been substituted with its array
counterpart. Specifically, every relationR/n+1 that appears inQ asR(id, d1, . . . , dn)
is replaced by the conjunction id 6= NULL_D∧ fR,A1(id) = d1 ∧ . . .∧ fR,An(id) = dn,

7This is a technicality of mcmt, as explained in [Ghi+20b], since mcmt has only one index
sort.
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where D = type(id). The details on how to write this explicitly in mcmt are in the
journal article [Ghi+ a]. Variables in ϕ are substituted with their array counterparts.
In particular, every variable d ∈ Vars(ϕ) is substituted with pinj_i[x] (for some
i), which is the array component of the input place pinj bringing the value bound
by the variable d. Given that ϕ is represented as a conjunction of atoms, its
representation in mcmt together with the aforementioned substitution is trivial.

To finish the construction of G, we append to it the mcmt version of Qe ∧ ϕe.
We come back to condition (FC1) and show how bindings are generated for

ν-variables of the output flow of t. As explained in Section 9.3, in mcmt we
use a special universal guard :uguard (to be inserted right after the :guard
entry) that, for each j ∈ {1, . . . , n}, and for every variable ν ∈ ΥD ∩ (OutVars(t) \
Vars( ~outj)) previously declared using

:eevar nu D

and for arrays p1, . . . , pk with target sort D, consists of expression (for all p)
(not(=nu p_1[j]))...(not(=nu p_k[j]))

This encodes “local” freshness for ν-variables, which suffices for our goal. Notice
that here j is a universally quantified index variable defined in the mcmt transition
statement with :var j. We remark that universal guards are the distinctive
feature of U-RASs that distinguishes them from (plain) RASs (cf. Section 3.2.2).

After a binding has been generated and the guard of t has been checked, a
new marking is generated by assigning corresponding tokens to the outgoing places
and by removing tokens from the incoming ones. Note that, while the tokens are
populated by assigning their values to respective arrays, the token deletion happens
by nullifying (i.e., assigning special NULL constants) entries in the arrays of the
input places. All these operations are specified in the special update part of the
transition statement U and are captured in mcmt as follows

:numcases NC
...
:case (= j i)
:val v1,i

...
:val vk,i

...

There, the transition runs through NC cases. All the following cases go over the
indexes y1,. . . , yN that correspond to tokens that have to be added to places.
More specifically, for every place pout ∈ P such that |color(pout)| = k, we add
an i-th token to it by putting a value vr,i in i-th place of every r-th component
array of pout. This vr,i can either be a ν-variable nu from the universal guard,
or a value coming from a place pin specified as pin[xm] (from some x input
index variable) or a value from some of the relations specified as (R_Ai id).
Note that id should be also declared as

:eevar id D_Ri_id
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where type(id) = D_Ri_id. Every :val v statement follows the order in which
all the local and global variables have been defined, and, for array variables a and
every case (= j i), such statement stands for a simple assignment a[i] := v. For
COA-nets, one also has to include a “default” case that essentially encodes a law of
inertia for all the tokens that have not been consumed. This is done by repeating
local variables in place of v in each :val v statement.8 Global variables, instead,
have same values in all the cases, including the default one.

Finally, let us come back to the initial marking encoding. A special mcmt
transition is used to inject the initial marking into the mcmt array-based system.
This mcmt transition populates the arrays representing places, all initialized as
empty, with entries that correspond to the initial COA-net marking m0.

This mcmt transition can be executed only if flag init_fl, denoting whether
the initial marking assignment has taken place, is TRUE.9 It works as follows:

:transition
:var i1,..., iM
:var j
:guard (=init_fl TRUE)
:numcases NCm0
...
:case (= j i)
:val v1,i

...
:val vk,i

...
:val FALSE
...

Note that the init_fl flag should be previously declared using the mcmt
statement
:global init_fl Bool

Same holds for the boolean constants TRUE and FALSE: they are declared using
the respective statements

:smt (define TRUE ::Bool)

and
:smt (define FALSE ::Bool)

Then, the transition runs through NCm0 cases. All the cases go over the indexes
i1,. . . , iM that correspond to tokens that have to be added to places. More
specifically, for every place p ∈ P such that m0(p) 6= ∅⊕ and |color(p)| = k, we
add an i-th token to it by putting constant vr,i ∈ C in i-th place of every r-th
component array of p. Moreover, every case has to update init_fl, changing
its value to FALSE.

8Notice that all local variables have to be indexed with j.
9In case a transition is enriched with guard G, then G should contain a conjunct (= init_fl

FALSE).
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Figure 9: A COA-net representing a hotel booking process with the initial marking containing only one token

in place ready

it, and, if the chosen room is not available, can repeat the booking process. The sec-

ond process instead plays a role of a “booking adversary”: it allows to pick any room

without verifying the room availability and can always be executed in parallel with the

on-line booking process.

Both processes run on a catalog composed of two relations Hotel(h : HName) and

Room(r : RId, h : HName, t : String). The first relation stores information about

all the hotels that can be potentially available for booking, whereas the second relation

lists rooms (as well as their types) offered by such hotels.

We now illustrate a few MCMT code snippets acquired by manually translating

the booking example. The translation process starts with defining all the static data

components such as data types and relation signatures in MCMT:

:smt (define-type HName)

:smt (define-type RId)

:smt (define-type Bool)

:smt (define-type String)

:smt (define RoomHotel ::(-> RId HName))

:smt (define RoomType ::(-> RId String))

:smt (define TRUE ::Bool)

29

Figure 12.8: A COA-net representing a hotel booking process with the initial marking
containing only one token in place ready

12.2.3 Encoding Example
Currently, the encoding presented in the previous section does not have a prototype
realizing it. Thus, we demonstrate the feasibility of our approach by manually
encoding a COA-net into mcmt [GR10b].

Let us start with a COA-net N that represents a simple, faulty hotel booking
scenario.10 In Figure 12.8, the net is split into two parts, one representing an on-line
booking process followed by a customer and the other accounting for bookings
done directly on site. In the first process, the customer consequently chooses a
hotel and a room in it, and, if the chosen room is not available, can repeat the
booking process. The second process instead plays a role of a “booking adversary”:
it allows to pick any room without verifying the room availability and can always
be executed in parallel with the on-line booking process.

Both processes run on a catalog composed of two relations Hotel(h : HName)
and Room(r : RId, h : HName, t : String). The first relation stores information
about all the hotels that can be potentially available for booking, whereas the
second relation lists rooms (as well as their types) offered by such hotels.

We now illustrate a few mcmt code snippets acquired by manually translating
the booking example. The translation process starts with defining all the static
data components such as data types and relation signatures in mcmt:

:smt (define-type HName)
:smt (define-type RId)
:smt (define-type Bool)
:smt (define-type String)
:smt (define RoomHotel ::(-> RId HName))

10As we will see later, this example encodes unwanted booking behavior.
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:smt (define RoomType ::(-> RId String))
:smt (define TRUE ::Bool)
:smt (define FALSE ::Bool)

Here, RoomHotel and RoomType are functions used for the functional charac-
terization of the last two attributes of relation Room.

To make mcmt aware of the catalog schema used in the example, we add
the following block:

:db_driven
:db_sorts Hotel Room Bool String
:db_functions RoomType RoomHotel
:db_constants TRUE FALSE
:db_relations

Now we need to encode the places of N . Observe that, while such places as
p3 and booked are clearly unbounded, ready, p1 and p2 will never carry more than
one token. To this end, we demonstrate how bounded places can be treated in
mcmt by simply resorting to globally declared variables (instead of arrays) for
storing token components. Following the translation instructions from the previous
section, one gets the following:

:local BookedRooms_1 RId
:local booked_2 HName
:local booked_3 String
:local p3_1 RId
:local p3_2 HName
:local p3_3 String
:global p1_1 HName
:global p2_1 Rid
:global p2_2 HName
:global p2_3 String
:global ready Bool
:global init_fl Bool

As mentioned above, all the variables needed for representing 1-bounded places
are declared using the :global keyword. Given that place ready can be seen
as a flag, we use Bool-typed variable ready to model it. Then, we write the
initialization statement, in which all the places are “nullified”, together with all the
eevar declarations needed later on for encoding transition preconditions:

:initial
:var x
:cnj (= init_fl TRUE) (= ready FALSE) (= p1_1 NULL_HName)

(= p2_1 NULL_RId) (= p2_2 NULL_HName) (= p2_3 NULL_String)
(= booked_1[x] NULL_RId) (= booked_2[x] NULL_HName)
(= booked_3[x] NULL_String) (= p3_1[x] NULL_RId)
(= p3_2[x] NULL_HName) (= p3_3[x] NULL_String)

:eevar e HName
:eevar d HName
:eevar f HName
:eevar g RId
:eevar l RId
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:eevar m RId
:eevar n String
:eevar o String
:eevar p String
:eevar q Bool

This statements are immediately followed by an mcmt transition modeling the
initial marking assignment:

:transition
:var j
:var x
:guard (= init_fl TRUE) (= x x)
:numcases 2
:case (= x j)
:val booked_1[j]
:val booked_2[j]
:val booked_3[j]
:val p3_1[j]
:val p3_2[j]
:val p3_3[j]
:val p1_1
:val p2_1
:val p2_2
:val p2_3
:val TRUE
:val FALSE
:case
:val booked_1[j]
:val booked_2[j]
:val booked_3[j]
:val p3_1[j]
:val p3_2[j]
:val p3_3[j]
:val p1_1
:val p2_1
:val p2_2
:val p2_3
:val TRUE
:val FALSE

Let us now showcase a net transition. For example, the book online (that deals
with unbounded places) is represented with the following code:

:transition
:var j
:var x
:guard (= init_fl FALSE) (not (= p2_1 NULL_RId))

(not (= p2_2 NULL_HName)) (not (= p2_3 NULL_String))
(= booked_1[x] NULL_RId) (= booked_2[x] NULL_HName)
(= booked_3[x] NULL_String) (= p3_1[x] NULL_RId)
(= p3_2[x] NULL_HName) (= p3_3[x] NULL_String)

:numcases 2
:case (= x j)
:val p2_1
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:val p2_2
:val p2_3
:val p3_1[j]
:val p3_2[j]
:val p3_3[j]
:val p1_1
:val p2_1
:val p2_2
:val p2_3
:val ready
:val init_fl
:case
:val booked_1[j]
:val booked_2[j]
:val booked_3[j]
:val p3_1[j]
:val p3_2[j]
:val p3_3[j]
:val p1_1
:val p2_1
:val p2_2
:val p2_3
:val ready
:val init_fl

The interested reader can go over the complete example encoding here: https:
//tinyurl.com/5eyr59rm.

12.3 Unsafety Checking of COA-nets and its For-
mal Properties

Thanks to the encoding of COA-nets into the database-driven module of mcmt, we
can handle the parameterized verification of safety properties over COA-nets.

The purpose of this section is to formalize this verification problem, and to
comment on its (meta-)properties, primarily considering algorithmic aspects arising
from the encoding into mcmt such as soundness, completeness, and termination.
We also discuss (un)decidability issues. In particular, we isolate an interesting
class of COA-nets for which verification is decidable. All these considerations
are possible because, thanks to the encoding into mcmt, COA-nets can be seen
as a particular instance of U-RASs.

12.3.1 Unsafety Properties

We focus our attention on safety properties, that is, properties that have to globally
hold in each state of the system. As customary, a safety property is verified in
the converse, that is, by expressing a corresponding unsafety property, and by
checking if there exists a reachable state of the system that satisfies it. If so, then

https://tinyurl.com/5eyr59rm
https://tinyurl.com/5eyr59rm
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the state and the sequence of transitions to reach that state from the initial one
witness that the system is indeed not safe.

Definition 12.3.1 (COA-net Property). An (unsafety) property over COA-net
N is a formula of the form ∃~y.ψ(~y), where ψ(~y) is a quantifier-free query that
additionally contains atomic predicates [p ≥ c] and [p(x1, . . . , xn) ≥ c], where p is a
place name from N , c ∈ N, and Vars(ψ) = YP , with YP being the set of variables
appearing in the atomic predicates [p(x1, . . . , xn) ≥ c].

Here, [p ≥ c] specifies that in place p there are at least c tokens. Similarly,
[p(x1, . . . , xn) ≥ c] indicates that in place p there are at least c tokens carrying
the tuple 〈x1, . . . , xn〉 of data objects. Here, x1, . . . , xn act as a filter that selects
the matching tokens in p. Additionally, the same variables may be used to inspect
different places as join operators, in turn expressing co-reference constraints on
tokens present in the respective places. A property may also mention relations
from the catalog, provided that all variables used therein also appear in atoms
that inspect places.

This can be seen as a language to express data-aware coverability properties of
a COA-net, possibly relating tokens with the content of the catalog. Focusing on
covered markings as opposed as fully-specified reachable markings is customary
in data-aware Petri nets or, more in general, well-structured transition systems
(such as ν-PNs [RVFE11]).

Example 12.3.33

Consider the COA-net of Example 12.1.32, with an initial marking that populates
the pool place with available trucks. Property ∃p, o.[delivered(p, o) ≥ 1] ∧
[working(o) ≥ 1] captures the undesired situation where a delivery occurs for
an item that belongs to a working (i.e., not yet paid) order. This is expressed
by checking for the existence of two tokens that are respectively located in the
delivered and working places, and that co-refer on the same order.

Similarly to what shown in Section 12.2, also properties as of Definition 12.3.1
admit a direct encoding into the mcmt model checker, as we show next. We start
by looking into single components of a property of the form ∃~x.ψ and discuss how
each component should be represented in mcmt. As mentioned in Definition 12.3.1,
properties are quantifier-free queries that may contain relations in them proviso
that such relations have their variables appearing in atomic place predicates. To
this end, the translation of queries without place predicates is “subsumed” by the
translation of extended guards presented in Section 12.2 (however, we are going
to comment on its peculiarities later on).

We start by translating predicates. An atomic predicate [p ≥ c], where
color(p) = D1 × . . .×Dk, is represented using the following mcmt statement:
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(not (= p_1[z_1] NULL_D1)) ... (not (= p_1[z_c] NULL_D1))
...
(not (= p_k[z_1] NULL_Dk)) ... (not (= p_k[z_c] NULL_Dk))

Here, z_i are special existentially quantified index variables that can appear only
in the property formula and do not need to be explicitly declared anywhere in the
mcmt specification. The statement above formalizes the fact that there are at least
c tokens in place p (or, similarly, at least c tuples in arrays representing place p)
such that each of them has all the components different from NULL.

Analogously, we deal with each atomic predicate of the form [p(x1, . . . , xn) ≥ c]
and translate it into the following mcmt statement:

(= p_1[z_1] x_1) ... (= p_n[z_1] x_n)
...
(= p_1[z_c] x_1) ... (= p_n[z_c] x_n)

This statement, as opposed to the statement formalizing predicate [p ≥ c], does not
need to check that token components are empty. Instead, it formalizes the fact that
there are at least c tokens in place p all identical to the token (x1, . . . , xn).

Let us now denote each predicate [pi ≥ ci] (resp., [pi(x1, . . . , xn) ≥ ci]) statement
translation with P_i (resp., P’_i) and the total number of such translations
as m (resp. m’). Then, the final translation of property ∃~x.ψ is represented
in mcmt as follows:

:u_cnj P_i1 P_i2 ... P_im P’_j1 P’_j2 P’_jm’ G

Here, G is a statement containing the quantifier-free query translation, in which
variables in every relation have to be substituted with suitable p_j[zl] array
components taken from some of the P_i and P’_i statements.

Example 12.3.34

Consider the COA-net from Section 12.2.3. It is easy to see that it is not always
possible to book a room, either on site or on-line, that has not been taken
yet (that is, a token with the room identifier has been placed in place booked).
The property capturing this situation for the on-line component of the net can
be written as ∃r, h, t.[p2(r, h, t) ≥ 1] ∧ [booked(r, h, t) ≥ 1]. In mcmt, proviso
that p2 is 1-bounded and the predicate [p2(r, h, t) ≥ 1] can be substituted with
[p2(r, h, t) = 1], this property is specified as following:
:u_cnj (not (= p2_1 NULL_RId)) (not (= p2_2 NULL_HName))

(not (= p2_3 NULL_String)) (= p2_1 booked_1[z1])
(= p2_2 booked_2[z1]) (= p2_3 booked_3[z1])

Notice that this property encoding is optimized as it suffices to specify that the
same token can be found both in p2 and booked.

Similarly, for the on site part of the net the unsafety property is specified as
∃r, h, t.[p3(r, h, t) ≥ 1] ∧ [booked(r, h, t) ≥ 1]. Its mcmt encoding is as follows:
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:u_cnj (not (= p3_1[z1] NULL_RId)) (not (= p3_2[z1] NULL_HName))
(not (= p3_3[z1] NULL_String)) (= p3_1[z1] booked_1[z2])
(= p3_2[z1] booked_2[z2]) (= p3_3[z1] booked_3[z2])

12.3.2 Verification Problem
To express the verification problem of interest in our setting, we follow the line of
research extensively studied to formally analyze dynamic systems with read-only
relational data [DLV16; LDV17; Deu+18], focusing our attention on (un)safety
properties. Specifically, we will import the results on U-RASs shown in Chapter 4.

Technically, we frame our verification problem as checking whether it is true
that all the reachable states of a marked COA-net satisfy a desired safety condition,
independently from the content of the catalog. This captures the fact that the
system is robustly safe, in the sense that safety does not depend on a specific
configuration of the read-only data. In the converse, we take an unsafety property
defined as in Definition 12.3.1, and check whether there exists an instance of the
catalog such that the COA-net can evolve the initial marking to a state where
that property holds. This is formally captured next.

Definition 12.3.2 (COA-net Verification Task). Given a property ψ as in
Definition 12.3.1, a marked COA-net Nm0 is unsafe w.r.t. ψ if there exists a catalog
instance Cat for N such that the marked fixed-catalog COA-net 〈N,m0, Cat〉 can
reach a configuration where ψ holds. If this is not the case, then Nm0 is safe
w.r.t. ψ.

In the following, whenever we generically mention the term verification, we
implicitly refer to the verification task of Definition 12.3.2.

Example 12.3.35

Consider again the COA-net of Example 12.1.32, and the property defined in
Example 12.3.33. The COA-net is safe w.r.t. this property, as the property
never holds in the executions of the COA-net, irrespectively of the content of
the net catalog. This is because an item can be delivered only if it has been
previously loaded in a compatible truck; this is in turn possible only if the order
to which the loaded item belongs is paid.

Example 12.3.36

In Example 12.3.34, we have mentioned two properties that we conjecture to
be unsafe. mcmt allows to check the corresponding COA-net against both of
these properties at once: it suffices to mention them in the specification file and
the tool will consider them as one disjunction. This disjunction is shown to be
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unsafe by mcmt in 0.26 seconds.The tool was run on a machine with macOS
High Sierra 10.13.3, 2.3 GHz Intel Core i5 and 8 GB RAM.

12.3.3 Soundness and Completeness
We now consider the usage of mcmt to carry out the verification problem of
Definition 12.3.2. With a slight abuse of terminology, we interchangeably use
the term COA-net to denote the net under study or its mcmt encoding, and
likewise for the term property.

Proofs of all results in this section are directly obtained by exploiting the close
relationship between COA-nets and the foundational framework of U-RASs, which
at the basis of the database-driven module of mcmt, implicitly established by
the translation defined in Section 12.2.

Specifically, we consider the key (meta-)properties of soundness and completeness
of the backward reachability procedure BReachRAS encoded in mcmt that we employ
here for verifying COA-nets (details on BReachRAS are in Section 4.3).11 For the
sake of clarity, we call this procedure BReachCOA when applied to COA-nets, and
in our context we assume it takes as input a marked COA-net and an (undesired)
property ψ. Given a marked COA-net 〈N,m0〉 and a property ψ, we say that an
UNSAFE output of BReachCOA is correct if there exists an instance of the catalog
so that the net can evolve from the initial marking to a configuration that satisfies
ψ; we say that a SAFE output is correct if such a catalog does not exist.

As in the case of the previous formalism for which we studied verification
procedures, we formally characterize the (meta-)properties of BReachCOA as follows.

Definition 12.3.3. Given a marked COA-net 〈N,m0〉 and a property ψ,
BReachCOA, when applied to verify unsafety of 〈N,m0〉 w.r.t. ψ, is:

• sound if, whenever it terminates, it produces a correct answer;
• partially sound if, whenever it returns SAFE, that output is always correct

(in this case, the UNSAFE output can be incorrect);
• complete (w.r.t. unsafety) if, whenever 〈N,m0〉 is UNSAFE with respect to ψ,

then BReachCOA detects it and returns UNSAFE.

In general, BReachCOA is not guaranteed to terminate. This is not surprising
given the expressiveness of the framework and the type of parameterized verification
tackled: they same happen for generic (non-acyclic) SASs, for (Universal) RASs
and for generic DABs.

We start by studying BReachCOA on COA-nets in their full generality. As we
have seen in Section 12.2, the encoding of fresh variables calls for a limited form

11Recall that Backward reachability has nothing to do with marking reachability. In this work,
we deal with reachability of a configuration that satisfies a property which, in turn, is implicitly
achieved by covering a marking, which, in turn, assigns to places tokens that carry tuples of data
(potentially retrieved from the read-only catalog).
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of universal quantification: specifically, in order to impose that a fresh variable
is different from all the values currently present in the net, we need to employ
universal guards, which are available in U-RASs but not in plain RASs. Indeed, as
a side remark, notice that proper freshness goes beyond the features covered by the
foundational framework of plain RAS, which in fact does not explicitly consider
fresh data injection, but only the injection of possibly fresh data taken from some
(possibly) infinite value domain: in other words, this means that an external user can
possibly inject a fresh element from an infinite domain — since there are infinitely
many elements, such an element certainly exists — but the RAS query language
cannot explicitly force the system to pick up such an element. That is why we need
to employ U-RASs instead of RASs. Unfortunately, U-RASs cannot be directly
verified by BReachRAS, but we need first to eliminate the universal quantification
by applying the abstraction described in Section 4.4. For that reason we can
only guarantee that BReachRAS is partially sound when applied to the encoding of
COA-nets explicitly using fresh variables, and spurious UNSAFE outcomes can arise.

The phenomenon described above for COA-nets is not surprising. In fact, it is
known from previous works (see, e.g., [Alb+12b]) that when transition formulae
employ universal quantification over the indexes of an array, the backward search
cannot guarantee that all the indexes are indeed considered. This can lead to
potentially spurious situations in which some indexes are simply “disregarded” when
exploring the state space. This spurious exploration of the state space, which is
similar to what happens in lossy systems, may result in the wrong classification
of a SAFE case as being UNSAFE.

With all these considerations in mind, we state the main result about COA-nets.

Theorem 12.3.1. BReachCOA is effective, partially sound and complete when
applied to verify unsafety of COA-nets w.r.t. ψ.

Proof. The theorem follows immediately from Corollary 4.3.3 and from the encoding
of COA-nets and of properties into the database-driven mode of mcmt, i.e. into
the theoretical framework of U-RASs.

To mitigate the presence of potentially spurious results, mcmt is equipped
with techniques for debugging the returned result [Alb+12b]. In particular, mcmt
explicitly returns, together with the unsafety verdict, a flag discriminating the case
where the produced result is provably correct from the case where the result may
have been mistakenly obtained due to a spurious exploration of the state space.
As we already saw in Chapter 9, when the result may be wrong because of the
presence of a spurious trace, mcmt warns the user reporting that the ‘stopping
failure model’ has been adopted (see Section 4.4 for details).

A key point is then how to tame partial soundness towards recovering full
soundness and completeness, as in the case of RASs. We obtain this for the two
special classes of conservative and bounded COA-nets, described next. Indeed, we
discuss how the encoding of these classes falls into the scope of the plain RAS model.
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12.3.4 Conservative COA-nets
Conservative COA-nets do not have the ability to inject fresh values into their
tokens, but only to manipulate data objects mentioned in the initial marking
or in the catalog.

Definition 12.3.4 (Conservative COA-nets). A COA-net is conservative if no
ν-variable is used in its arc inscriptions.

Conservative COA-nets form a subclass of the foundational framework of (plain)
RASs (Section 3.2.2), and consequently enjoy all the properties established there.
In particular, we inherit that BReachCOA is a semi-decision procedure.

Theorem 12.3.2. BReachCOA is sound and complete when applied to verify
unsafety of marked, conservative COA-nets w.r.t. a property ψ.

Proof. This is again a direct consequence of Corollary 4.3.3 and from the encoding
of COA-nets and of properties into the database-driven mode of mcmt: indeed,
it is sufficient to notice that the absence of ν-variables ensures that the encoded
COA-net is a plain RAS.

One may wonder whether studying conservative nets is meaningful. We argue
in favor of this by considering some modeling techniques to remove fresh variables
from a net while preserving interesting properties.

Avoiding fresh variables The first technique is to ensure that whenever there
is an unnecessary usage of ν-variables, such ν-variables are removed. As we have
extensively discussed at the end of Section 12.1, generating a fresh object and
inserting it into a token is necessary only if that object can be subsequently used
in other tokens as well, thus acting as a reference. This is the case if the object
belongs to the “one” side of a many-to-one relationship (e.g., the case of an order
that can contain many items), or whenever the object participates to a one-to-one
relationship and belongs to the endpoint that has been chosen as reference.

Fixing objects When the COA-net requires to capture references, ν-variables
can still be removed if one limits the scope of verification, by considering a fixed
set of “prototypical” objects of a given type instead of the more general case where
such objects are created on-the-fly. This is for example what happens in soundness
checking of workflow nets, where analysis is limited to a single case object and its
evolution from the input to the output place of the net.

In the general case, moving from arbitrary creation to a fixed set of elements
leads to an under-approximation of the original COA-net. In fact, unsafety carries
from the modified to the original net, in the sense that if a property is unsafe for
the modified net, then it is unsafe also for the original one. Contrariwise, a property
may be judged as safe in the modified net while being unsafe on the original one.
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Example 12.3.37

By inspecting the COA-net of Example 12.1.32, two observations are in place
when it comes to the creation of tokens.

• The creation of orders requires to use a ν-variable to generate fresh order
identifiers, which later on are referenced by items so as to track which
items belong to which orders.

• The creation of items does not need to appeal to ν-variables, since the
only important aspect is to faithfully reconstruct the number of items
that belong to the same order and share category, not to distinguish them.
To do so, one can simply rely on the multiset semantics of Petri nets.

To remove the only ν-variable present in the net, we can remove the new order
transition, and directly use the initial marking to insert one or more order tokens
into the working place. This allows one to verify how these orders co-evolve in
the net. A detected issue carries over the general setting where orders can be
arbitrarily created.

Pre-creation of objects A third technique to eliminate ν-variables is similar in
spirit to the one just described, but yields a much more sophisticated setting. The
idea is the remove ability of the net to create fresh objects, by assuming that all the
objects of interest are created at the very beginning. Differently from the previous
case, though, we do not explicitly insert these objects in the initial marking, but
we assume instead that they are “pre-created” and listed in a dedicated, read-only
catalog relation, from which objects are picked and injected in the net. This is more
powerful than focussing on a fixed set of objects, since now verification considers
all possible configurations of this read-only relation, consequently checking safety
where an arbitrary amount of objects is considered.

When the original net contains an emitter transition supporting the uncon-
strained creation of fresh objects of a given kind (such as in the case of orders
for Example 12.1.32), we can employ this technique to turn the emitter transition
into a conservative transition that preserves verification. The general idea on how
to do so is shown in Figure 12.9. The original net has an emitter transition that
can at any point in time inject a fresh object of type D into a D-typed place p.
The corresponding conservative net introduces a new, dedicated unary relation
PreCreatedD, storing the pre-created objects of type D, and modifies the original
emitter transition by decorating it with a guard that fetches an object from that
relation, and injects that object into p. This approach directly generalizes to the
case where tokens in place p contain tuples of objects is handled analogously.

We can intuitively see that this transformation preserves verification through
the following line of reasoning. Since the original net supports arbitrary creation of
objects, for every n there is a run of the net where exactly n objects are dynamically
created and used. To check for unsafety, one such run has to be isolated to show
that the system can reach an undesired configuration. Assume this run employs k
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Figure 12.9: Verification-preserving transformation of an emitter transition injecting
fresh objects into a conservative, emitter transition that picks objects from a dedicated
read-only catalog relation.

objects generated through the emitter transition. When carrying out verification of
the corresponding conservative net with pre-created objects, there must exist an
instance of catalog for which the same run as before is generated. Since relation
PreCreatedD is completely unconstrained, this is indeed possible, as there exists an
instance of the catalog that inserts exactly k objects in PreCreatedD.

Example 12.3.38

Pre-creation of objects can be applied to the net of Example 12.1.32, transform-
ing it into a conservative net for which BReachCOA is guaranteed to be sound
and complete.

12.3.5 Bounded COA-nets
An orthogonal approach with respect to the one studied in Section 12.3.4 is to
analyze what happens if the COA-net of interest is bounded. Recall that, as
defined in Section 12.1, a COA-net is bounded by b if every reachable marking
does not assign more than b tokens to every place of the net. Infinitely many
states can still be reached due to the fact that tokens may, along a run, carry
infinitely many distinct objects.

In this case, we can straightforwardly “compile away” fresh variables by
introducing a place that contains, in the initial marking, enough provision of
predefined objects, consuming from that place whenever the net requires a fresh
object. This effectively transforms the COA-net into a conservative one, and so
Theorem 12.3.2 applies, leading to the following result.

Corollary 12.3.3. BReachCOA is sound and complete when applied to verify
bounded, marked COA-nets w.r.t a property ψ.

In Chapter 5, the first two decidability results are obtained when the schema
of read-only relations is acyclic, that is, its foreign keys never form referential
cycles where a relation directly or indirectly points to itself. In particular, by
imposing acyclicity and boundedness, we can relate COA-nets to Theorem 5.1.1.In
fact, thanks to boundedness, the content of each place can be stored in a set of
predefined variables (whose size would depend on the bound and the arity of the
place): this implies that cyclic bounded COA-nets can be equivalently represented
as SASs. This, in turn, yields the following.
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Theorem 12.3.4. The verification problem defined in Definition 12.3.2 is decidable
for acyclic, bounded, marked COA-nets.

Notice that this decidability result does not imply that BReachCOA terminates,
as the algorithm and the encoding of COA-nets into data-driven mcmt are not
specifically tailored to this particular case. Nevertheless, re-defining the encoding
by using predefined variables would not be practical: even if doing so we can
theoretically guarantee termination, in the case of a high bound k for the bounded
COA-net the use of predefined variables for representing places would make the
mcmt specification file unnecessarily long.

It is worth pointing out that Theorem 12.3.4 covers the case of OA-nets, that is,
COA-nets without catalog. Actually, since verifying OA-nets does not require to
handle any form of parameterisation, one can relate bounded OA-nets to the notion
of bounded, generic transition systems extensively studied in [BH+13; Cal+18],
yielding decidability of full model checking for a variety of first-order temporal logics.

Several modeling strategies can be adopted to turn an unbounded COA-net into
a bounded one. We briefly illustrate here two, based on prior works.

The first strategy is about explicitly modeling resources that are responsible for
the evolution of certain objects [MR16]. A bound on resources of a certain kind
consequently bounds the number of such objects that can coexist in the same state.

The second strategy conceptually relates to multiplicities in data modeling.
Whenever there are one-to-many relationships implicitly present in a net, one
can ensure that every object participating to the “one" side relates to boundedly
many objects on the “many" side by explicitly imposing an upper bound on the
multiplicitly attached to the “many" side [MC16].

We illustrate the application of such strategies in the context of our running
example.

Example 12.3.39

The COA-net of Example 12.1.32 has two sources of unboundedness: the
creation of orders, and the addition of items to working orders.

The creation of unboundedly many orders can be controlled by introducing
a suitable resource place, for example a place containing idle managers, each
of which gets responsibility over one and only one order at a time. We can
then impose that each order is created only when there is an idle manager not
working on any other order. More specifically, whenever an order is created and
injected in the net, an idle manager is consumed and associated to the order.
Whenever an order completely disappears from the net, its responsible manager
is returned to the idle manager place. This makes the overall amount of orders
unbounded over time, but bounded in each marking by the number of manager
resources.

The addition of items to a working order can be bounded by imposing,
conceptually, that each order cannot contain more than a maximum fixed
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number of items.

12.3.6 Discussion on Undecidability of COA-nets

After all the considerations done on soundness, completeness, and decidability,
one may wonder whether the intrinsic difficulty in verifying COA-nets comes from
the sophistication of the model and/or the fact that verification is parameterized
w.r.t. the catalog. We just point out that, even by reducing the modeling capabilities
to the acceptable minimum required to capture interesting object-centric processes,
unbounded COA-nets remain Turing-powerful.

This is proved in detail in the journal paper [Ghi+ a]. We just report here the
main intuition behind this proof. We consider OA-nets, a variant of COA-nets
where the catalog is not present at all, and the very simple property of checking
whether a designated place is nonempty (which is a particular case of covering).

This problem is decidable for the special case of OA-nets employing just a single
type and unary places only. In fact, this setting coincides with that of ν-Petri
nets [RVFE11], which have decidable coverability.

ν-Petri nets lack the support of object reference, and in turn of one-to-many
relationships among objects, since each token can only carry a single data object,
not multiple ones. One may consequently wonder whether the decidability status
changes by considering the minimal setting in which relationships are supported,
namely OA-nets with no catalog and equipped with binary places hosting tokens
that carry pairs of data objects.

It turns out that OA-nets of this form are already Turing-powerful, and so make
nonemptiness of places undecidable to check. The proof is a simplified version of the
one described in [Las16], which is based on a reduction from the halting problem
for Minsky 2-counter automata: this problem is well-known to be undecidable since
Minsky 2-counter automata are Turing-powerful.

As a final remark, we notice that this implies, by using the encoding provided
in Section 12.2, that verifying safety for generic U-RASs (which is the most general
model we consider in this thesis) is undecidable [Min67].

12.4 Comparison to Other Models
We comment on how the COA-nets relate to the most recent data-aware Petri net-
based models, arguing that they provide an interesting mix of their main features.
DB-nets. COA-nets in their full generality match with an expressive fragment of
the DB-net model [MR17]. DB-nets combine a control-flow component based on
CPNs with fresh value injection a là ν-PNs with an underlying read-write persistent
storage consisting of a relational database with full-fledged constraints. Special
“view” places in the net are used to inspect the content of the underlying database,
while transitions are equipped with database update operations.
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In COA-nets, the catalog accounts for a persistent storage solely used in a
“read-only” modality, thus making the concept of view places rather unnecessary.
More specifically, given that the persistent storage can never be changed but only
queried for extracting data relevant for running cases, the queries from view places
in DB-nets, that involve solely relations that are never updated along the run of the
net, have been relocated to transition guards of COA-nets. While COA-nets do not
come with an explicit, updatable persistent storage, they can still employ places and
suitably defined subnets to capture read-write relations and their manipulation. More
specifically, one can employ an approach presented in [MR19]. Using this one can
define a set of additional relational places PR, in which every pi faithfully represents
some S-typed relation schema Ri, a set of additional transitions TQR, in which every
transition is equipped with a guard that can access a content of some of the relational
places and thus models a UCQ¬D query. Moreover, such relations can be updated
using a set of transitions TUR using the standard token manipulation mechanism:
whenever a fact has to be deleted (resp. added), a respective token is consumed (resp.
added). Notice two things here. First of all, using this representation, COA-nets
can update only a known number of tuples. Second, as opposed to the formalism
used in [MR19], COA-nets cannot prioritize one enabled transition over another one.
This means that, in the case of deletions, one has to update the relation places in a
“lossy” manner by introducing additional transitions that would also allow to skip
the deletion (this would model cases in which a relation does not have a required
tuple), whereas in the case of additions one needs to adopt the multiset semantics,
allowing relation places to have potentially multiple instances of the same tuple.

While verification of DB-nets has only been studied in the bounded case, COA-
nets are formally analyzed here without imposing boundedness, and parametrically
w.r.t. read-only relations. In addition, the mcmt encoding provided here constitutes
the first attempt to make this type of nets potentially verifiable in practice.
PNIDs. The net component of our COA-nets model is equivalent to the formalism
of Petri nets with identifiers (PNIDs [Hee+09]) without inhibitor arcs. Interestingly,
PNIDs without inhibitor arcs form the formal basis of the Information Systems
Modelling Language (ISML) defined in [Pol+19]. In ISML, PNIDs are paired
with special CRUD operations to define how relevant facts are manipulated. Such
relevant facts are structured according to a conceptual data model specified in ORM,
which imposes structural, first-order constraints over such facts. This sophistication
only permits to formally analyze the resulting formalism by bounding the PNID
markings and the number of objects and facts relating them. The main focus of
ISML is in fact more on modeling and enactment. COA-nets can be hence seen as a
natural “verification” counterpart of ISML, where the data component is structured
relationally and does not come with the sophisticated constraints of ORM, but
where parameterized verification is practically possible.
Proclets. COA-nets can be seen as a sort of explicit data version of a relevant
fragment of Proclets [Fah19]. Proclets handle multiple objects by separating their
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Figure 12.10: A table with three Proclet patterns and their corresponding representa-
tions in COA-nets. Here P and C respectively stand for parent and child Proclets.

Table 1: A table with three Proclet patterns and their corresponding representations in COA-nets. Here P

and C respectively stand for parent and child Proclets.
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respective subnets, and by implicitly retaining their mutual one-to-one and one-to-
many relations through the notion of correlation set. In Figure 12.6, that would
require to separate the subnets of orders, items, and trucks, relating them with
two special one-to-many channels indicating that multiple items belong to the
same order and loaded in the same truck.

A correlation set is established when one or multiple objects o1, . . . , on are
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co-created, all being related to the same object o of a different type (cf. the creation
of multiple items for the same order in our running example). In Proclets, this
correlation set is implicitly reconstructed by inspecting the concurrent histories of
such different objects.12 Correlation sets are then used to formalize two sophisticated
forms of synchronization. In the equal synchronization, o flows through a transition
t1 while, simultaneously, all objects o1, . . . , on flow through another transition
t2. In the subset synchronization, the same happens but only requiring a subset
of o1, . . . , on to synchronize.

Interestingly, COA-nets can encode correlation sets and the subset synchronisa-
tion semantics (see Figure 12.10). A correlation set is explicitly maintained in the
net by imposing that the tokens carrying o1, . . . , on also carry a reference to o. This
is what happens for items in our running example: they explicitly carry a reference
to the order they belong to. Subset synchronisation is encoded via a properly crafted
subnet. Intuitively, this subnet works as follows. First, a lock place is inserted in
the COA-net so as to indicate when the net is operating in a normal mode or is
instead executing a synchronisation phase. When the lock is taken, some objects in
o1, . . . , on are nondeterministically picked and moved through their transition t2.
The lock is then released, simultaneously moving o through its transition t1. Thanks
to this approach, a Proclet with subset synchronization points can be encoded
into a corresponding COA-net, providing for the first time a practical approach to
verification. This does not carry over Proclets with equal synchronisation, which
would allow us to capture, in our running example, sophisticated mechanisms
like ensuring that when a truck moves to its destination, all items contained
therein are delivered. Equal synchronisation can only be captured in COA-nets by
introducing a data-aware variant of wholeplace operation, which we aim to study
in the future. We also briefly comment on the constrained creation in Proclets.
As defined in [Fah19], this type of creation happens uniquely for a correlation set
(that is, two different creations would have two different correlation sets). However,
in COA-nets it is possible to create objects asynchronously which can be later
correlated (see pattern in Figure 12.5).

12In the remainder of this section, we assume that if the same creation step is activated multiple
times by the same object o, then the whole set of objects created in such multiple activations are
considered all part of the same correlation sets.
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In this thesis, we provided the foundations of Data-Aware Process (DAP) safety
verification based on Satisfiability Modulo Theories (SMT) solving and on automated
reasoning methods. To do so, we proposed a novel general framework that relies
on model-theoretic algebra. In this framework, complex processes enriched with
data can be faithfully modeled as symbolic array-based transition systems. These
are dynamic systems that evolve over time, where the sets of states and transitions
are described symbolically, specifically using logical formulae involving arrays: in
such systems, data are formalized using an algebraic representation of relational
databases. We verify DAPs against safety properties by employing an extension
of the backward reachability procedure. This extension requires the development
of sophisticated algorithmic techniques for the treatment of the quantified data
variables that are used in transitions. The procedure has been implemented in
the state-of-the-art mcmt model checker. We showed how this framework can be
successfully applied in the context of BPM to model and verify concrete data-aware
business processes: to do so, we introduced different formalisms that on the one
hand build on top of standard languages used in practice, on the other hand are
able to capture expressive modeling capabilities.
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13.1 Overview of the First Part and Relevant
Future Work

In the first part, we have studied the problem of SMT-based safety verification for
an interesting type of DAPs, i.e., artifact systems. We did so by relying on array-
based systems as the underlying inspiring model. We studied safety verification
parametrically on the read-only database: this means that the read-only database is
fixed within a run, but the safety property is checked against all possible runs of the
system induced by all possible read-only database instances over a given DB schema.
We have shown how to overcome the main technical difficulty arising from this
approach, namely reconstructing quantifier elimination techniques in the rich setting
of artifact systems, using the model-theoretic machinery of model completions.

On top of this framework, we have identified three classes of systems for which
safety is decidable, which impose different combinations of restrictions on the form
of transitions and on the shape of the DB schema.

From the foundational point of view, it is an open, non-trivial research question
to see whether our framework and similar approaches (e.g., Data Petri nets) can
be inter-reduced to each other when we restrict our attention to the three studied
decidable fragments. We are also interested in using our theoretical framework as the
starting point for a full line of research dedicated to SMT-based techniques for the
effective verification of data-aware processes, considering richer forms of verification
going beyond safety (such as liveness, fairness, or full LTL-FO), identifying novel
decidable classes (e.g., by restricting the structure of the DB and of transition and
state formulae) and investigating additional integrity constraints used in database
theory. Specifically, studying the latter should extend decidability and model-
completability results beyond the case of primary and foreign key dependencies.
Moreover, it would be interesting to study whether the decidable classes considered
here are tight, or whether interesting variations can be found for which decidability is
preserved, possibly guaranteeing termination of the backward reachability procedure.

All in all, the formal framework of Part I is deeply rooted in the long-standing
tradition of the application of model theory in computer science, as witnessed
by notable approaches like the ones in [Ghi04; BGT06; GNZ08; NRR09; Sof08;
Sof18; GG18; GGK21]. In particular, the thesis applies these ideas in a genuinely
novel mathematical context and shows how these techniques can be used for the
first time to empower algorithmic techniques for the verification of infinite-state
systems based on arrays in the style of [GR10a; Con+12], so as to make such
techniques applicable to the timely, challenging settings of DAPs [Cal+19e]. For
additional references on the use of model completeness in computer science, the
interested can read our survey [Cal+19c]. We hope that this thesis will trigger
further interest for the formal verification community to widen the application
of model-theoretic techniques in this context.
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13.2 Overview of the Second Part and Relevant
Future Work

In Part II, we developed efficient techniques for handling the quantifiers introduced
during the computation of preimages in the backward reachability procedure.
Specifically, we proved that the problem of eliminating quantifiers in model
completions required by our machinery is equivalent to the well-known problem
of computing covers, which has been studied before in the literature of symbolic
model checking. We presented for the first time a correct and efficient procedure
for computing covers for the theory of equality and uninterpreted symbols (i.e.,
EUF): this procedure is based on a constrained variant of the well-established
Superposition Calculus.

In Part II, we also specialized this calculus to the case of interest of our
applications to DAP verification, showing it becomes a tractable problem. Finally,
we extended the calculus to deal with a significant case of non-empty DB theory
that is useful in practice.

In this respect, an interesting future direction is to develop efficient algorithms
for computing covers to further theories axiomatizing integrity constraints used
in database applications. Practical algorithms for the computation of covers for
richer DB theories (e.g., the ones falling under the hypotheses of Proposition 4.6.3)
still need to be designed. Symbol elimination of function and predicate variables
should also be combined with cover computations.

Combined cover algorithms (along with the perspectives in [GM08]) are crucial
also in the context of DAP verification: they are needed when dealing with complex
DB (extended)theories that can be seen as combination of different theories. We
showed that covers exist in the combination of two convex universal theories over
disjoint signatures in case they exist in the component theories and in case the
component theories also satisfy the equality interpolating condition. We proved
that the last condition is in some sense needed for cover transfer. In order to prove
our result on combined covers, Beth definability property for primitive fragments
turned out to be the crucial ingredient to extensively employ. In case convexity fails,
we showed by a counterexample that covers might not exist in the combined theory.
The last result raises the following research problem: even if in general covers do
not exist for the combination of non-convex theories, under which conditions can
one decide whether covers exist and, if so, how can one compute them?

DAP applications suggested also a different line of investigations, which led
us to consider so-called ‘tame combinations’, where we need cover algorithms for
DB theories combined with (fragments of) arithmetic theories. For significant DB
theories, and in practical cases where only very limited arithmetic is used, combined
cover computation can be efficiently handled. Our algorithm for covers in tame
combinations has been implemented in version 3.0 of mcmt.

In general, we believe that this algorithm can be exploited in various model-
checking applications, especially when uninterpreted domains are extended with
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arithmetic capabilities. A final future research line could consider cover transfer
properties to non-disjoint signatures combinations, analogously to similar results
obtained in [GG17a; GG18] for the transfer of quantifier-free interpolation.
Indeed, the main challenge here seems to consist in finding sufficient conditions
for the existence of covers in combination of non-convex theories: in fact, we
know from Section 8.4 that the non-convex version of the equality interpolation
property [BGR14] is not enough for this purpose.

We concluded Part II by providing a description of the database-driven mode
of mcmt for verifying safety of Universal RASs, and a preliminary experimental
evaluation of that tool against a benchmark of concrete data-aware business processes
inspired from the DAP literature. The results shown there are promising: most
of the tested examples were successfully verified in less than 1 second. We aim at
building on the encouraging results reported here toward an extensive experimental
evaluation of our approach, by enlarging the experimental setup and extending the
capabilities of the tool to incorporate forms of verification that go beyond safety.

Concerning implementation, we plan to further develop mcmt to incorporate
in it the plethora of optimizations and sophisticated search strategies available in
infinite-state SMT-based model checking. A natural next step in this respect is
to study how the computation of over-approximations, abstractions and invariants
(a capability that mcmt already supports but that should be adapted to the
“db_driven” mode) and well-established techniques for SMT-based model checking
like CEGAR [McM06; Alb+14] and IC3 [Bra11b; HB12; Bra12] can be used to
speed up the verification of artifact systems.

13.3 Conclusions for the Third Part and Rele-
vant Future Work

In Part III, we focused our attention on the BPM applications of the formal
framework introduced in Part I.

13.3.1 Data-Aware BPMN and delta-BPMN

In Chapter 11, we have introduced a data-aware extension of BPMN, called
DAB, balancing between expressiveness and verifiability. We have shown that
parameterized safety problems over DABs can be correctly tackled by translating
them into RASs and exploiting the SMT-based and automated reasoning techniques
presented in the first two parts: in particular we applied the backward reachability
procedure implemented in the mcmt model checker.

We have then identified classes of DABs suitably controlling the data components
and the way the process manipulates it, guaranteeing termination of backward
reachability. We have also shown that a realistic example of DAB can be actually
verified by mcmt with promising performances.
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DABs should be thought of as an intermediate formalism between RASs and
more practice-oriented models and languages. In this spirit, we have then introduced
a SQL-based language for modeling and manipulating volatile and persistent data,
and demonstrated how it can be incorporated into the existing BPMN standard,
resulting in a language for modeling data-aware BPMN that we called delta-BPMN.
We showed how these delta-BPMN processes can be modeled with Camunda using its
native extension capabilities. We also reported on an implementation of a prototype
that takes delta-BPMN models produced in Camunda and automatically translates
them into the syntax of mcmt that, in turn, allows for their immediate verification.

There are plenty of avenues for future work. We enumerate the most important
ones, considering methodological, foundational, and experimental aspects.

From the methodological point of view, the conditions we have introduced to
guarantee termination of DABs can be seen as modeling principles for data-aware
process designers who aim at making their processes verifiable. The applicability
of such principles to real-life processes is an open question, calling for genuine,
further research on empirical validation on real-world scenarios, as well as on the
definition of guidelines helping modeling and refactoring of arbitrary DABs into
fully verifiable ones. Frameworks for the empirical validation of data-aware process
models have been recently brought forward [Rei+17], and can be in fact extended
also considering the verifiability factor.

From the foundational perspective we are interested in equipping DABs with
datatypes and corresponding rigid predicates, including arithmetic operators, as
done in [DLV16] for artifact systems. This is promising especially considering that
there are plenty of state-of-the-art SMT techniques to handle arithmetic, and the
general framework from Part I already supports them. The extension of DABs
with arithmetic is then quite easy to achieve, but this would break the decidability
result that we presented: in fact, when dealing with (unbounded) arithmetic, the
locality principle does help anymore. At the same time, we want to attack the
main limitation of our approach, namely that guards and conditions are actually
existential formulae, and the only (restricted) form of universal quantification
available in the update language is that of conditional updates. Universal guards
in transition formulae could be very useful in specifications: for example, they
would allow us to specify a branch in a job hiring process that is followed only if no
applicant satisfies a certain condition. This extension is again straightforward, if
one considers the general framework of U-RASs. However, as we commented several
times along this thesis, the use of universal guards may introduce spurious unsafe
traces, compromising some of the theoretical results we got for DABs.

An orthogonal, challenging question is how, and to what extent, some of the
most recent techniques developed for temporal model checking of artifact-centric
systems [DLV16] can be incorporated in our approach, allowing us to prove more
sophisticated properties beyond safety: this is again connected to the more general
question, mentioned in the previous sections, on how to attack different verification
tasks in the U-RAS framework.
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We stress that DABs and delta-BPMN focus on private BPMN processes.
Natural future work is to extend their scope towards collaborative processes and
choreographies. The literature already contains notable examples of approaches
combining BPMN with data when dealing with multiple interacting processes, but,
as highlighted several times, the focus of these works so far has been mainly on
modeling and enactment [Mey+13; Mey+14; Mey+15] and not on verification.

Finally, the operational counterpart of DABs given by delta-BPMN is still
ongoing work and, as commented in Chapter 11, some capabilities still need to be
implemented: for example, there are blocks of the process component (e.g., the
exception handler blocks) that are covered by the DAB model but are not supported
by delta-BPMN yet. Moreover, we know that Camunda also allows to extend its user
interface with additional third-party functionalities: we intend to develop a fully
integrated environment for modeling and verification of delta-BPMN processes. We
also plan to investigate in more detail the usability aspects of our proposal. Indeed,
its usability for concrete benchmarks of industrial-inspired business processes is an
open research problem. Specifically, interesting use cases are still missing. This does
not only hamper empirical research on how data-aware processes are modeled in
practice, but also the possibility of carrying out extensive experimental evaluations.
In particular, the community lacks benchmarks written using the integration of
standard process-centric languages such as BPMN with standard languages for
expressing the sophisticated types of data objects we support. We believe that this
is one of the most important open challenges that the BPM community needs to
address in the future, and we are already working in this direction. We are currently
setting up a concrete benchmark completely written using our SQL-based language
and the BPMN standard that could be then fully adopted (including process- and
data-specific metrics) within the RePRoSitory platform [Cor+19], and that we
intend to use for evaluating the performance of delta-BPMN.

We also hope that cutting-edge research on the automated discovery of multi-
perspective processes will eventually produce sophisticated models to be fed to
our verification machinery.

13.3.2 COA-nets

In Chapter 12, we have brought forward an integrated model of processes and data
inspired by Colored Petri Nets that balances between modeling power and the
possibility of carrying sophisticated forms of verification parameterized on read-only,
immutable relational data. We have approached the problem of verification not only
foundationally, but also systematically by showing a direct encoding into mcmt, so
as to import all the theoretical results for U-RASs: in order to show the feasibility
of the encoding, we encoded in mcmt a simple example of COA-net, for which
unsafe configurations were tested in fractions of a second. We have also shown that
this model directly relates to some of the most sophisticated models studied in this
spectrum, attempting at unifying their features in a single approach.
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Given that mcmt is based on Satisfiability Modulo Theories (SMT), our approach
naturally lends itself, as for DABs, to be extended with numerical data types
and arithmetic. It would be also interesting to study the impact of introducing
“data-aware wholeplace operations”, essential to capture the most sophisticated
synchronization semantics, so-called “equal synchronization”, defined for Proclets
[Fah19]. We think that this is possible if one uses the capabilities of U-RASs in
their full generality, i.e., by employing proper universal guards (and not only the
limited form we use here for freshness).

We also tried to discuss how certain formal restrictions imposed on the general
formal model of COA-nets can be interpreted conceptually. In the future, it would be
important to perform a further systematic investigation on modeling capabilities of
COA-net subclasses for real examples. As remarked above, we are currently working
on the definition of a benchmark for testing delta-BPMN: it seems interesting to
consider the translation of this benchmark into corresponding imperative data-aware
formalisms, including COA-nets. To facilitate the translation process, we plan on
implementing a tool that would allow us to perform it automatically. However, we
already know that this would require a preliminary study on additional heuristics
improving mcmt’s performance for imperative models.

13.4 Additional Open Directions
As argued several times, the main contribution provided by this thesis is to pave the
way for the use of SMT solving and for the development of automated reasoning
methods in order to model and verify data-aware processes. This idea originated
several independent research directions that all have in common the use of SMT-
based techniques for solving problems intrinsically involving the interplay of processes
and data. We present four of these open directions that have been recently proved
to be particularly promising.

Verification of Artifact Systems Under Ontologies

The first direction we are investigating concerns the study of (safety) verification for
variants of artifact systems where, instead of managing a database, they operate over
a description logic (DL) ontology that stores background, incomplete information
about the artifacts. In [Cal+21b], we presented a preliminary attempt to attack
this problem, by studying artifact systems where the underlying DL ontology
is specified in (a slight extension of) RDFS [BG14], a schema language for the
Semantic Web formalized by the W3C. In spirit, this approach is reminiscent of
previous works studying the verification of dynamic systems (in particular, Golog
programs) operating over a DL ontology, such as [Cla+14; ZC16]. We intend to
deepen this investigation by considering (possibly richer) artifact systems operating
over other significant DL ontologies.
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Safety Verification of (Data-Aware) Multi-Agent Systems

The aim of the second direction we mention is the automatic safety verification of
multi-agent systems (MASs) [KL16; KL17; Kou+19], parametrized on the number
of concrete agents. The problem of verifying whether a given MAS is safe consists
of establishing whether none of its possible executions can lead to bad states.
In a declarative setting, a set of states is usually captured by a “state” formula
existentially quantifying over agents. As the studied verification is parameterized,
it only describes the finite set of possible agent templates, while the actual number
of concrete agent instances that will be present at runtime, for each template, is
unbounded and cannot be foreseen: in case the MAS is proved to be safe, this
outcome needs to be independent of the actual number of concrete agents.

This problem lies at the intersection of parameterized verification and of
verification of multi-agent systems. In [FGM21; FGM20], we presented a first
attempt to attack this problem using infinite-state model checking based on SMT,
relying on the general framework introduced in Part I: specifically, in [FGM21] we
illustrate the theoretical foundations of our approach to MASs, whereas in [FGM20]
we detail the core implementation of SAFE [Saf], a web tool that makes our results
operational. This tool provides an intuitive user interface that allows to directly
encode PMASs into mcmt, so as to be immediately verified.

From the foundational perspective, data-aware extensions of this setting can
be directly incorporated, along the line studied in this thesis. For instance, this
will allow us to model and check for safety extended models of MASs that can
be interpreted as suitable extensions of U-RASs, where agents are given read and
write access to private and public databases, hence allowing us to model complex
systems in which data is stored and exchanged, possibly involving arithmetic.
From a practical perspective, these extensions can be easily added to SAFE: it
would be enough to enrich SAFE with the aforementioned modeling capabilities,
to automatically translate MAS specifications into mcmt specifications and then
to exploit the database-driven mode of mcmt.

Conformance Checking for DAPs

A parallel research line in the DAP context where the use of SMT solving seems to
be very fruitful is given by conformance checking. Conformance Checking [Car+18]
is a key process mining [Aal11] task for comparing the expected behavior described
by a process model and the actual behavior recorded in a log as sequences of
action or events. The problem of how to perform this task in an effective way has
been extensively studied for pure control-flow processes, but only few approaches
have tried to solve it by also considering also the interaction with data [Man+16].
In [Fel+21] we tried to attack this challenging problem by considering processes
that combine the data and control-flow dimensions. In particular, we adopted
Data Petri Nets as the underlying formalism for representing DAPs, and showed
how SMT-based techniques can be effectively employed for computing data-aware
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alignments, one of the most significant conformance metrics. For this purpose, we
introduced an operational framework called CoCoMoT (Computing Conformance
Modulo Theories) that uses state-of-the-art SMT solvers like Yices and z3 as
the underlying algorithmic backbone. We are convinced that the high flexibility
and expressivity provided by SMT solvers can be effectively applied to solve other
conformance checking tasks and, possibly, can be promoted to be among the most
successful tools to employ in process mining.

Verification of Reinforcement Learning Agents in Structured Environ-
ments

The last research direction that is worth investigating is at the intersection of
AI and Machine Learning (ML), and concerns the verification of learning agents.
Designing agents that are both adaptive and trustworthy is a long-standing problem:
these two problems are usually attacked separately. While trustworthiness is the
goal of formal verification, adaptiveness is instead tackled by using ML settings.
Reinforcement Learning (RL) [SB18] is one of these ML settings and has emerged as
one of the most important techniques for equipping agents with learning capabilities
used to maximize a reward while operating in an unknown environment. The
application of techniques from formal methods and knowledge representation in an
RL-based framework has so far typically revolved around guaranteeing that a single
agent [DG+19; HKA19; HKA20] or multiple agents [Ham+21] ensure temporal
specifications of interest in the limit (i.e., after the learning phase). They do so in
a generic context where no assumption is made on the structure of the state space.
We are interested in a different setting, i.e., the one where learning agents act in
so-called ‘structured environments’ [GMP21]. These are environments where agents
come with an explicit structure, for example relational data representing what the
agents know about the world (in the style of [CDGM13; Cal+19e]). Our interest
is to investigate such systems both during and after the learning process. This is
for example relevant for BPM applications, where the states are process states and
there are some constraints that must not only be satisfied in the limit but also
during learning. This requires to incorporate at once background knowledge on the
process itself in the form of (safety) constraints that should always be respected,
preconditions and effects dictating how states can evolve into other states (and,
conversely, which transitions do not exist at all), and finally also on goals that should
be satisfied in the limit. We are currently studying how to combine automated
reasoning and reinforcement learning techniques to formally verify the behavior
of agents interacting in such structured environments.
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13.5 Final Considerations
All in all, we believe that the expressive frameworks and the powerful techniques
based on SMT solving and automated reasoning in general provide a very effective
theoretical and methodological basis for solving problems that intrinsically combine
dynamic features with static, data-oriented dimensions. Our conviction is that
SMT provides a universal framework to attack a multitude of problems that can be
described in symbolic terms. In the BPM spectrum, as we already showed [Fel+21],
this means going beyond verification and tackling a wide spectrum of reasoning
tasks for data-aware processes along their entire lifecycle.
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