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Abstract. The compositional model CospanSpan(Graph) has been
shown to model a variety of phenomena from asynchronous circuits to hi-
erarchy, mobility and coordination. Compositionality, i.e. the property of
being an algebraic calculus, is here an essential feature: the basic elements
of the model are cospans and spans of graphs, that can be interpreted
as automata with states and transitions, as well as interfaces and condi-
tions, algebraically composable. There are two classes of operations on
these automata - parallel (or product) and sequential (or sum) operations
- yielding a categorical algebra of automata. An expression (or even a re-
cursive equation) in this algebra represents a hierarchical, reconfigurable
network of interacting components. In this paper we further investigate
the expressiveness of CospanSpan(Graph), modeling biological systems:
first, we provide a compositional and timed description of the combined,
complex system of the Heart and a Dual Chamber Pacemaker. Then, we
consider as a case study the well-known gene regulation system in the
Lac Operon in Escherichia coli.

Keywords: Automata · Compositionality · Categories · Open networks
· Biological Systems

1 Introduction

The CospanSpan(Graph) model, introduced in [13,12], has been shown to model
cleanly a variety of phenomena from asynchronous circuits to hierarchy, mobility
and coordination [10]. The elements of the model are cospans and spans of graphs
which here we shall call simply Automata with interfaces. These automata are
an extension of the “classical” finite state automata introduced in the seminal
work of McCulloch and Pitts, as a discrete model for threshold neurons and
neural networks. Automata, since then, have become the standard model for the
specification and verification of sequential discrete dynamical systems. In recent
years we have been assisting to a paradigmatic shift from sequential systems (ex-
emplified by Turing Machines) to networks of parallel, interacting components.
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Hence, various models of automata with product (of states) have been proposed
to represent interactions (Zielonka, Petri). These models are rather natural, but
unfortunately are not compositional, that is they lack a proper algebra. On the
contrary, compositionality, i.e. the property of providing an algebraic calculus,
is an essential feature of CospanSpan(Graph). In this approach, we provide ex-
plicitly operations that combine automata with interfaces and their connectors.
Hence, given a syntactic expression, its global semantics can be deduced only
by the semantics of its constituents, and this is precisely what our algebraic ap-
proach guarantees. In order to fully achieve compositionality, also with respect
to parallelism, we will have to abandon both the classical (inherently sequen-
tial and closed) model of finite state automata and the well established idea
of input/output communication for a new paradigm, considering as fundamen-
tal the notion of open systems with communication interfaces. The operations
in the algebra CospanSpan(Graph) can be interpreted in a very natural way as
operations on automata with states and transitions, as well as interfaces and con-
ditions. An expression (or even a recursive equation) in this algebra represents
a hierarchical, reconfigurable network of interacting components.

From the beginning, it has been very natural to consider Automata Theory
and Biology as very close disciplines, with a long and very fruitful tradition of
reciprocal influences, from robotics to biology-inspired models of computation
([3,14,7]). Unfortunately, whereas we could be reasonable satisfied with Turing
Machines (and finite state automata) when dealing with discrete, isolated and
sequential computation devices, in the literature there is a lack of a general
model for compositional biology-inspired automata networks that could play an
analogous role. This is crucial for performing verifications tasks as well.

In this paper we would like to focus on the importance of an algebraic ap-
proach for the compositional description of variable topology networks that leads
to a natural formalization of biological systems. Specifically, the purpose of this
paper is to investigate further the expressivity of the Cospan-Span model, in
particular for the modeling of biological discrete real-time systems. In [8], we
gave a rather simple but compositional description of the heart. Here, we pro-
vide a complete description of a Dual Chamber Pacemaker following [11,1], but,
for the first time, in a compositional way. Furthermore, we compose the heart
model and the pacemaker model, so obtaining a complete specification of the
Heart-Pacemaker system. Finally, we consider as an additional case study the
well-known gene regulation system in the Lac Operon of the Escherichia coli
bacterium and we give a compositional description of it and its functioning.

2 CospanSpan(Graph): an algebraic formalism for
automata networks

In this section we recall the algebra Span(Graph) and its dual counterpart
Cospan(Graph), as introduced by Benabou in [2].
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2.1 The Algebra of Spans

Definition 1. Given a category C with finite limits, we define a new category
Span(C) describing its objects and arrows. Objects of Span(C) are the same
objects of C; arrows of Span(C) from A to B (with A, B objects) are spans,
that is pairs of arrows (f : X → A, g : X → B) of C with common domain,
often written:

X

A B

gf

Composition of spans (f : X → A, g : X → B) and (h : Y → B, k : Y → C) is
by pullback (restricted product):

X ×B Y

X Y

A B C
h

kf

g

A span (f : X → A, g : X → B) will also be written X : A → B, and the
composition of span will be indicated with the notation X · Y : A −→ C. The
identity span of object A is (1A, 1A). The category Span(C) is actually symmet-
ric monoidal with the tensor product of two spans (f : X → A, g : X → B) and
(h : Y → C, k : Y → D) being (f ×h : X×Y → A×C, g×k : X×Y → B×D),
denoted by X × Y or X ⊗ Y . The identity span of object A is (1A, 1A).

In [13] an informal geometric description (in the style of monoidal category
string diagrams) was introduced for the operations in Span(C). For example,
spans (X → A× B,X → C ×D), (Y → C ×D,Y → E) and (Z → F,X → G)
are represented by pictures of components with ports:

Then the composite of the first two spans is pictured as:

while the tensor of the first and third is pictured as:
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In addition, as shown in [10,8], there are constants of the algebra that are pic-
tured as operation on wires and enable the depiction of general circuit diagrams
(e.g., a parallel feedback [10]). The correspondence between on the one hand
constants and operations and on the other hand their geometric representations
results in the fact that expressions in the algebra have corresponding circuit or
system diagrams.

Span(Graph), a parallel algebra of automata. Surprisingly, Span(C),
when C is the category of (finite) directed graphs (Span(Graph)), provides a
very natural mathematical framework for describing the composition of automata
with interfaces (or communication ports, as in circuit theory). Consider a span
of graphs (δ0 : X → A, δ1 : X → B). The graph X may be considered as the
graph of states and transitions of an automata with interfaces, and it is called
the head of the span. The graph A is the graph of states and transitions of the
combined left ports and B is the graph of states and transitions of the combined
right ports. The graph morphism δ0 associates to a state and to a transition of
the automaton X the corresponding state and transition of the left ports A; the
morphism δ1 does the same for the right ports.

For all the examples of this paper the left and right ports have only one
state so that we tend to ignore that; then δ0 and δ1 are a double labelling of the
transitions of the automaton X by transitions on the left ports and transitions
on the right ports. More intuitively each transition of the component has an
effect on all its interfaces, maybe the null effect ε.

In the case that the left and right ports have one state, the operations of
composition and tensor of spans have a simple description in terms of operations
on automata. The tensor of two automata has states being pairs of states, one
of each automata, and has as transitions pairs of transitions between the corre-
sponding pairs of states. The composition of automata has similarly states being
pairs of states, and transitions being pairs of transitions but only those pairs of
transitions whose labels on the connected ports are the same. In the following,
we will call the span composition parallel composition with communication and
the tensor parallel composition without communication.

Remark 1. In [4] timed actions with different duration have been considered.
Composition is obtained by considering a linear (w.r.t. transitions) number of
extra ”internal” states. The intended meaning is that a component that interacts
with a ”faster” one could be still doing an action (hence being in an internal
state) when the other one has completed the transition.
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2.2 The Algebra of Cospans

Definition 2. There is a dual construction Cospan(C) for categories C with
finite colimits. In fact, Cospan(C) = Span(Cop), but it is better seen describing
explicitly its objects and arrows. Objects of Cospan(C) are the same as objects
of C; arrows of Cospan(C) from A to B are cospans, that is, pairs of arrows
(f : A→ X, g : B → X) of C with common codomain, also written as:

A B

X

gf

Composition (which is also called restricted sum) of (f : A→ X, g : B → X) and
(h : B → Y, k : C → Y ) is by pushout (glued sum), which is the dual operation of
the pullback in Span(C). A cospan (f : A→ X, g : B → X) will also be written
X : A → B, and the composition of cospan will be indicated with the notation
X + Y : A −→ C. The identity cospan of object A is (1A, 1A).

Again there are constants of the algebra which are pictured as operation on
wires which enable the depiction of joining of wires and sequential feedback [12].

Cospan(Graph), a sequential algebra of automata. Analogously, when
C is the the category of (finite) directed graphs, Cospan(Graph) provides a
sequential calculus for automata that generalizes Kleene’s one. Consider a cospan
of graphs (γ0 : E → X, γ1 : F → X). The graph X may be considered as the
graph of states and transitions of an (unlabelled) automaton. The graph E is
the graph of initial states and transitions and F is the graph of final states
and transitions. In all the examples considered E and F have only states and
not transitions. The graph morphisms γ0 and γ1, usually geometrically depicted
with dotted lines, are often inclusion morphisms of the initial and final states in
X.

As shown in [8,10,17], it is possible to compose the two alge-
bras Span(Graph) and Cospan(Graph) in order to get the combined
CospanSpan(Graph) algebra, where both sequential and parallel operations are
compatible.

3 The heart System in CospanSpan(Graph)

In this section we briefly recall the simplified model of a human heart presented
in [8]. For doing so, we took inspiration from [11]. The heart is a muscular
organ and it is the engine of the blood flow. Being a physical system, it could
be modeled “globally” using continuous time and differential equations, but, we
believe, with great difficulty. In our approach we model it compositionally as a
discrete dynamical system. We observe that we focus on the regular behavior of
the heart. Considering that the heart system is quite complex, we concentrate
first on formalizing its basic components: the heart’s interfaces —veins, aorta and
pulmonary arteries—, atria, ventricula, tricuspid/mitral valve, sinoatrial node,
atrioventricular node and the His bundle.
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The heart comprehends arterial blood vessels —aorta on the left and pul-
monary artery on the right— and two veins. In the right side of the heart, blood
continuously enters through the veins and comes out through the pulmonary
artery, whereas on the left side enters in the pulmonary vein and comes out from
the aorta. So the heart’s interfaces are: (i) the pulmonary vein and the aorta on
the left side of the heart; (ii) superior and inferior vena cava and the pulmonary
artery on the right side of the heart.

We emphasize that blood is continuously going through the heart system, so
it would be incorrect to describe its flux in terms of input/output events.

The heart system furthermore consists of four cavity, paired up in two similar
subsystems, left and right. Each subsystem includes an atrium, on the top, and a
ventricle, on the bottom. Atria related to ventricles through tricuspid —for the
right side— and mitral —for the left side— valve. Atria are like a tank of blood
coming from veins. After a beat, the blood continues to enter, increasing the
internal pressure until a threshold is reached, that causes the tricuspid/mitral
valve to open. The blood begins to drain through the tricuspid/mitral valve
and at the same time the internal pressure in the atria decreases. There is a
further pressure peak in the atria due to the electric signal from the sinoatrial
node which causes the atrium’s contraction and the blood’s flow through the
tricuspid/mitral valve.

The sinoatrial node generates the normal rhythmic impulse and distributes
this impulse to both the atria, in a simultaneous way. The normal range is 60,
80 beats per minute. The atrioventricular node is primarily responsible for the
delay in passing the signal from the atria to the ventricles, whereas the His
bundle propagates the impulse to the ventricular heart mass.

For space limits, we only give a high level view of the heart model in the fol-
lowing figure, and its corresponding algebraic expression in CospanSpan(Graph).
More details and the description of all the other components can be found in [8].

(SVC⊗ IVC⊗ SA⊗ P-Vein) · (R-Atrium⊗AV⊗ L-Atrium)·

·(Tri-Valve⊗HIS⊗Mitr-Valve) · (R-Ventr⊗ L-Ventr) · (P-Artery⊗Aorta)
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4 Pacemaker in CospanSpan(Graph)

In this section, through the use of timed Cospan-Span(Graph) [4], we provide the
model of a pacemaker that communicates with the heart system described in the
previous section [8]. A pacemaker is a system that promptly supplies electrical
impulses to the heart in order to maintain an appropriate heart rate and also
ventricular-atrial synchrony. Different cardiac problems can occur, hence modern
pacemakers are used in different ways: each of them has a different labeling. In
particular, we model a Dual Chamber Pacemaker DDD − formalized in [11]
using UPPAAL − that stimulates both the atrium and the ventricle.

In [11], the Dual Chamber Pacemaker DDD is made up of five components:
(i) LRI Lower Rate Interval (ii) AVI Atrio-Ventricular Interval (iii) URI Up-
per Rate Interval (iv) PVARP Post Ventricular Atrial Refractory Period and
PVAB Post Ventricular Atrial Blanking (v) VRP Ventricular Refractory Pe-
riod. Bear in mind that the functioning of the modeled pacemaker is a first
approximation that can be extended, e.g. also considering a different type of
pacemaker or using probabilistic Cospan-Span(Graph) formalism [6].

The next picture shows the pacemaker architecture and the communications
with our heart system. Unlike [11], we add two components for broadcasting
transmission: S1 and S2 - respectively for AP and VS - which transmits the
signal to different other components simultaneously.

The pacemaker shown here was modeled considering the heart in brachycardia
or with a regular beat − with 80 beats per minute. The time used in the timed
version of Span(Graph) is discrete with ∆ = 10 milliseconds. The constants
TAVI, TLRI, TPVARP, TVRP, TURI and TPVAB − described in [11] − which
control the duration of the operations, have the following values: (i) TAVI:
150 ms; (ii) TLRI: 1000 ms; (iii) TPVARP: 100 ms; (iv) TVRP: 150 ms;
(v) TURI: 400 ms; (vi) TPVAB: 50ms.

In the following, we adopt the convention to denote interfaces (by abuse of
notation) with Component={labels}, where labels are the proper labels of the
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interfaces and Component corresponds to the automaton to be connected. For
sake of examples, we describe the LRI, AVI, URI and VRP components (the
details about the other components can be found here [9]).

Now we describe LRI component (Figure 1(a)) which has the task of main-
taining the heart rate: it models the cycle that defines the longest interval be-
tween two ventricular events by resetting the clock when a ventricular event
(VS, VP) is received. Furthermore, if it does not detect any atrial event AS, the
component delivers the atrial pacing AP after TLRI-TAVI (850 millisecond). As
shown in Figure 1(a), the time starts with S0; in addition, LRI tracks the time
through the passage from one state to the next. LRI has four interfaces: AVI =
{vp, ε}, VRP = {vs, ε}, PVARP = {as, ε} and Atrium = {ap, ε}. The transitions
are:

vp,ε/ε,ε : 0 → 1 ε,vs/ε,ε : 0 → 1
ε,ε/ε,ε : 1 → 2 ε,ε/ε,ε : 2 → 3

... ...
ε,ε/ε,ε : 848 → 849 ε,ε/ε,ε : 849 → 850
ε,ε/as,ε : 850 → 851r ε,ε/ε,ε : 851r → 852
ε,ε/ε,ε : 850 → 851l ε,ε/ε,ap : 851l → 852
ε,ε/ε,ε : 852 → 853 ε,ε/ε,ε : 853 → 0

Fig. 1. LRI and URI components

Next, we describe the AVI (Figure 2) which maintains the appropriate in-
terval between atrial and ventricular activation so it defines the longest interval
between an atrial event and a ventricular event. If AVI does not detect any
ventricular event (VS) after an atrial event (AS, AP), within TAVI, then AVI
delivers a ventricular stimulation (VP). AVI has five interfaces: LRI = {ap, ε},
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PVARP = {as, ε}, S2 = {vs, ε}, URI = {ε, ε1, ε2} and S1 = {vp, ε}. The transi-
tions are:

ap, ε, ε/ε, ε : -1 → 0 ε, as, ε/ε, ε : -1 → 0
ε, ε, ε/ε1, ε : 0 → 1 ε, ε, ε/ε2, ε : 0 → 1
ε, ε, ε/ε2, ε : 1 → 2 ε, ε, ε/ε1, ε : 1 → 2

... ...
ε, ε, ε/ε2, ε : 149→ 150 ε, ε, ε/ε1, ε : 149 → 150
ε, ε, vs/ε, ε : 150→ -1 ε, ε, ε/ε1, ε : 150 → 151
ε, ε, vs/ε, ε : 151 → -1 ε, ε, ε/ε2, ε : 151 → -1
ε, ε, ε/ε1, ε : 151 → 151 ε, ε, ε/ε, ε : -1 → -1

Fig. 2. AVI

The URI (Figure 1(b)) prevents the pacemaker from simulating the ventricle
too quickly thanks to a global clock used to track the time after a ventricular
event (VS,VP). URI allows AVI to supply VP only when the global clock is
TURI. URI has three interfaces: AVI = {ε, ε1, ε2}, S1 = {vp, ε} and S2 = {vs, ε}
The transitions are:

ε1/ε,vs : 0 → 1 ε/vp,ε : 1 → 0
ε1/ε,ε : 1 → 2 ε1/ε,ε : 2 → 3

... ...
ε1/ε,ε : 398 → 399 ε2/ε,ε : 399 → 0



10 A. Gianola et al.

Now we describe the PVARP (Figure 3). After an atrial event AS, a ventric-
ular event VS or VP must occur; therfore, when VS or VP is detected, in a small
latency time (TPVAB) atrial events are ignored. After TPVAB, there is a sec-
ond latency time (TPVARP), in which a signal is trasmitted − AR! − outside
the pacemakemaker. Finally, after TPVARP, the atrial event can be detected
and sent to the LRI component. PVARP has five interfaces: Heart = {ar!, ε},
LRI = {as, ε}, AVI = {as, vp, ε}, S2 = {as, vp, ε} and Atrium = {as!, ε}. The
transitions are:

ε, ε, ε/ε, ε : 0 → 0 ε, ε, vp/ε, ε : 0 → 1
ε, ε, ε/vs, ε: 0 → 1 ε, ε, ε/as, ε : 1 → 2

... ...
ar!, ε, ε/ε, as! : 50 → 51 ε, ε, ε/ε, ε : 50 → 51

... ...
ε, ε, ε/ε1, ε : 51 → n ε, as, as/ε, as! : n→ 0

Finally, we present VRP (Figure 4) which monitors all ventricular events
(VP, VS) and filters early events in the ventricular canal that could cause an
inappropriate pacemaker behavior. VRP has three interfaces: one named and
labeled by our heart system = {vs!, ε}, and two other interfaces named and
labeled S1 = {vp, ε} and S2 = {vs, ε}. The transitions are:

ε/vp, ε : IDLE → 0 ε/ε, ε : 0 → 1
... ...

ε/ε, ε : 149 → IDLE ε/vp, ε : IDLE→ s
ε/ε, vs : IDLE→ s vs!/ε, ε : s → 0

As the reader can notice, CospanSpan(Graph) can model, in a clear and
simple way, complex system like the heart-pacemaker system.

5 Lac Operon

In this section we provide a final biological application of the
CospanSpan(Graph) algebra: we formalize the Lactose Operon in the Es-
cherichia coli bacterium, using for the first time a natively compositional
framework.

The lactose operon in Escherichia coli is composed of a sequence of genes that
are responsible for producing three enzymes for lactose degradation, namely the
lactose permease, which is incorporated in the membrane of the bacterium and
actively transports the sugar into the cell, the beta galactosidase, which splits
lactose into glucose and galactose, and the transacetylase, whose role is marginal.
The Lac Operon functionality depends on the integration of two different con-
trol mechanisms, one mediated by lactose and the other by glucose. Since gene
expression is an energy consuming process, Escherichia coli synthesises the pro-
teins involved in the metabolism of lactose when this nutrient is present in the
environment and the environment does not provide glucose, which is a more
readily available source of energy.
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Fig. 3. PVARP
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Fig. 5. Lac Operon model
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The model, from [5,15,16], that we consider is depicted in graphical form in
Figure 5. The DNA sequence of the Lac Operon (depicted in Figure 5) regulates
the production of the enzymes, through the genes LacZ, LacY, LacA. The reg-
ulation process is as follows: gene LacI encodes the lac repressor R, which, in
the absence of lactose, binds to gene O (the operator). Transcription of struc-
tural genes into mRNA is performed by the RNA polymerase enzyme, which
usually binds to gene P2 (the promoter) and scans the operon from left to right
by transcribing the three structural genes LacZ, LacY and LacA into a single
mRNA fragment. When the lac repressor R is bound to gene O (that is, the
complex R-O is present) it becomes an obstacle for the RNA polymerase, and
transcription of the structural genes is not performed. On the other hand, when
lactose is present inside the bacterium, it binds to the repressor thus inhibiting
the binding of R to O. This inhibition allows the transcription of genes LacZ,
LacY, LacA by the RNA polymerase.

A second mechanism is relevant: when glucose is not present, the complex
cAMP-CAP, which is present and acting on P1, can increase significantly the
expression of lac genes. Of course, also in presence of the cAMP-CAP complex,
the expression of the lac genes is inhibited by R-O.

A complete description of the Lac Operon will be provided in a future paper,
and it is interesting because the role of the Cospan structure is significant in the
modeling. Here, we just give two simple examples, in the following pictures, of
the component O:

and of the protein R:
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6 Conclusions

In this paper we deeply investigated the compositional feature of
CospanSpan(Graph) in modelling biological systems.

A compositional description of these systems is promising because it can
provide effective verification techniques. Further developments could be, for ex-
ample, the integration of time and probability in the description of the Heart-
Pacemaker System and a more explicit use of the Cospan structure for modeling
the change of behaviors and the creation of new complex components inside a
biological system.
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