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Abstract

We study verification over a general model of artifact-centric systems, to assess (pa-
rameterized) safety properties irrespectively of the initial database instance. We view such
artifact systems as array-based systems, which allows us to check safety by adapting back-
ward reachability, establishing for the first time a correspondence with model checking
based on Satisfiability-Modulo-Theories (SMT). To do so, we make use of the model-
theoretic machinery of model completion, which surprisingly turns out to be an effective
tool for verification of relational systems, and represents the main original contribution of
this paper. In this way, we pursue a twofold purpose. On the one hand, we reconstruct
(restricted to safety) the essence of some important decidability results obtained in the
literature for artifact-centric systems, and we devise a genuinely novel class of decidable
cases. On the other, we are able to exploit SMT technology in implementations, building
on the well-known MCMT model checker for array-based systems, and extending it to
make all our foundational results fully operational.

1 Introduction

During the last two decades, a huge body of research has been dedicated to the challenging
problem of reconciling data and process management within contemporary organizations [39,
28, 38]. This requires to move from a purely control-flow understanding of business processes
to a more holistic approach that also considers how data are manipulated and evolved by
the process. Striving for this integration, new models were devised, with two prominent
representatives: object-centric processes [36], and business artifacts [34, 24].

In parallel, a flourishing series of results has been dedicated to the formalization of such
integrated models, and on the boundaries of decidability and complexity for their static anal-
ysis and verification [16]. Such results are quite fragmented, since they consider a variety of
different assumptions on the model and on the static analysis tasks [43, 16]. Two main trends
can be identified within this line. A recent series of results focuses on very general data-aware
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processes that evolve a full-fledged, relational database (DB) with arbitrary first-order con-
straints [11, 10, 1, 17]. Actions amount to full bulk updates that may simultaneously operate
on multiple tuples at once, possibly injecting fresh values taken from an infinite data domain.
Verification is studied by fixing the initial instance of the DB, and by considering all possible
evolutions induced by the process over the initial data.

A second trend of research is instead focused on the formalization and verification of
artifact-centric processes. These systems are traditionally formalized using three components
[26, 23]: (i) a read-only DB that stores fixed, background information, (ii) a working memory
that stores the evolving state of artifacts, and (iii) actions that update the working memory.
Different variants of this model, obtained via a careful tuning of the relative expressive power
of its three components, have been studied towards decidability of verification problems pa-
rameterized over the read-only DB (see, e.g., [26, 23, 12, 27]). These are verification problems
where a property is checked for every possible configuration of the read-only DB.

The overarching goal of this work is to connect, for the first time, such formal models
and their corresponding verification problems on the one hand, with the models and tech-
niques of model checking via Satisfiability-Modulo-Theories (SMT) on the other hand. This is
concretized through four technical contributions.

Our first contribution is the definition of a general framework of so-called Relational Ar-
tifact Systems (RASs), in which artifacts are formalized in the spirit of array-based systems,
one of the most sophisticated setting within the SMT tradition. In this setting, SASs are a
particular class of RASs, where only artifact variables are allowed. “Array-based systems” is
an umbrella term generically referring to infinite-state transition systems implicitly specified
using a declarative, logic-based formalism. The formalism captures transitions manipulating
arrays via logical formulae, and its precise definition depends on the specific application of
interest. The first declarative formalism for array-based systems was introduced in [31, 32]
to handle the verification of distributed systems, and afterwards was successfully employed
also to verify a wide range of infinite-state systems [8, 4]. Distributed systems are parame-
terized in their essence: the number N of interacting processes within a distributed system is
unbounded, and the challenge is that of supplying certifications that are valid for all possible
values of the parameter N . The overall state of the system is typically described by means
of arrays indexed by process identifiers, and used to store the content of process variables
like locations and clocks. These arrays are genuine second order function variables: they
map indexes to elements, in a way that changes as the system evolves. Quantifiers are then
used to represent sets of system states. RASs employ arrays to capture a very rich working
memory that simultaneously accounts for artifact variables storing single data elements, and
full-fledged artifact relations storing unboundedly many tuples. Each artifact relation is cap-
tured using a collection of arrays, so that a tuple in the relation can be retrieved by inspecting
the content of the arrays with a given index. The elements stored therein may be fresh values
injected into the RAS, or data elements extracted from the read-only DB, whose relations are
subject to key and foreign key constraints. This constitutes a big leap from the usual appli-
cations of array-based systems, because the nature of such constraints is quite different and
requires completely new techniques for handling them (for instance, for quantifier elimination,
see below). To attack this complexity, by relying on array-based systems, RASs encode the
read-only DB using a functional, algebraic view, where relations and constraints are captured
using multiple sorts and unary functions. The resulting model captures the essential aspects of
the model in [37], which in turn is tightly related (though incomparable) to the sophisticated
formal model for artifact-centric systems of [27].
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Our second contribution is the development of algorithmic techniques for the verification of
(parameterized) safety properties over RASs, which amounts to determine whether there exists
an instance of the read-only DB that allows the RAS to evolve from its initial configuration
to an undesired one that falsifies a given state property. To attack this problem, we build on
backward reachability [31, 32], one of the most well-established techniques for safety verification
in array-based systems. This is a correct, possibly non-terminating technique that regresses
the system from the undesired configuration to those configurations that reach the undesired
one. This is done by iteratively computing symbolic pre-images, until they either intersect
the initial configuration of the system (witnessing unsafety), or they form a fixpoint that does
not contain the initial state (witnessing safety).

Adapting backward reachability to the case of RASs, by retaining soundness and complete-
ness, requires genuinely novel research so as to eliminate new (existentially quantified) “data”
variables introduced during regression. Traditionally, this is done by quantifier instantiation
or elimination. However, while quantifier instantiation can be transposed to RASs, quantifier
elimination cannot, since the data elements contained in the arrays point to the content of a
full-fledged DB with constraints. To reconstruct quantifier elimination in this setting, which
is the main technical contribution of this work, we employ the classic model-theoretic machin-
ery of model completions [40]: via model completions, we prove that the runs of a RAS can
be faithfully lifted to richer contexts where quantifier elimination is indeed available, despite
the fact that it was not available in the original structures. This allows us to recast safety
problems over RASs into equivalent safety problems in this richer setting.

Our third contribution is the identification of three notable classes of RASs for which back-
ward reachability terminates, in turn witnessing decidability of safety. The first class restricts
the working memory to variables only, i.e., focuses on SAS. The second class focuses on RAS
operating under the restrictions imposed in [37]: it requires acyclicity of foreign keys and
ensures a sort of locality principle where different artifact tuples are not compared. Conse-
quently, it reconstructs the decidability result exploited in [37] if one restricts the verification
logic used there to safety properties only. In addition, our second class supports full-fledged
bulk updates, which greatly increase the expressive power of dynamic systems [41] and, in
our setting, witness the incomparability of our results and those in [37]. The third class is
genuinely novel, and while it further restricts foreign keys to form a tree-shaped structure, it
does not impose any restriction on the shape of updates, and consequently supports not only
bulk updates, but also comparisons between artifact tuples.

Our fourth contribution concerns the implementation of backward reachability techniques
for RASs. Specifically, we have extended the well-known mcmt model checker for array-
based systems [33], obtaining a fully operational counterpart to all the foundational results
presented in the paper. Even though implementation and experimental evaluation are not
central in this paper, we note that our model checker correctly handles the examples produced
to test verifas [37], as well as additional examples that go beyond the verification capabilities
of verifas, and report some interesting case here. The performance of mcmt to conduct
verification of these examples is very encouraging, and indeed provides the first stepping stone
towards effective, SMT-based verification techniques for artifact-centric systems.
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2 Preliminaries

We adopt the usual first-order syntactic notions of signature, term, atom, (ground) formula,
and so on. We use u to represent a tuple 〈u1, . . . , un〉. Our signatures Σ are multi-sorted and
include equality for every sort, which implies that variables are sorted as well. Depending
on the context, we keep the sort of a variable implicit, or we indicate explicitly in a formula
that variable x has sort S by employing notation x : S. The notation t(x), φ(x) means that
the term t, the formula φ has free variables included in the tuple x. Constants and function
symbols f have sources S and a target S′, denoted as f : S −→ S′ (relation symbols r only
have sources r : S). We assume that terms and formulae are well-typed, in the sense that the
sorts of variables, constants, and relations, function sources/targets match. A formula is said
to be universal (resp., existential) if it has the form ∀x (φ(x)) (resp., ∃x (φ(x))), where φ is a
quantifier-free formula. Formulae with no free variables are called sentences.

From the semantic side, we use the standard notions of a Σ-structure M and of truth of
a formula in a Σ-structure under an assignment to the free variables. A Σ-theory T is a set
of Σ-sentences; a model of T is a Σ-structure M where all sentences in T are true. We use
the standard notation T |= φ to say that φ is true in all models of T for every assignment
to the free variables of φ. We say that φ is T -satisfiable iff there is a modelM of T and an
assignment to the free variables of φ that make φ true inM.

In the following (cf. Section 4) we specify transitions of an artifact-centric system using
first-order formulae. To obtain a more compact representation, we make use there of definable
extensions as a means for introducing so-called case-defined functions. We fix a signature
Σ and a Σ-theory T ; a T -partition is a finite set κ1(x), . . . , κn(x) of quantifier-free formulae
such that T |= ∀x

∨n
i=1 κi(x) and T |=

∧
i 6=j ∀x¬(κi(x) ∧ κj(x)). Given such a T -partition

κ1(x), . . . , κn(x) together with Σ-terms t1(x), . . . , tn(x) (all of the same target sort), a case-
definable extension is the Σ′-theory T ′, where Σ′ = Σ∪{F}, with F a “fresh” function symbol
(i.e., F 6∈ Σ)1, and T ′ = T ∪

⋃n
i=1{∀x (κi(x) → F (x) = ti(x))}. Intuitively, F represents a

case-defined function, which can be reformulated using nested if-then-else expressions and can
be written as F (x) := case of {κ1(x) : t1; · · · ;κn(x) : tn}. By abuse of notation, we identify
T with any of its case-definable extensions T ′. In fact, it is easy to produce from a Σ′-formula
φ′ a Σ-formula φ equivalent to φ′ in all models of T ′: just remove (in the appropriate order)
every occurrence F (v) of the new symbol F in an atomic formula A, by replacing A with∨n
i=1(κi(v)∧A(ti(v))). We also exploit λ-abstractions (see, e.g., formula (6) below) for a more

compact (still first-order) representation of some complex expressions, and always use them
in atoms like b = λy.F (y, z) as abbreviations of ∀y. b(y) = F (y, z) (where, typically, F is a
symbol introduced in a case-defined extension as above).

3 Read-only Database Schemas

We now provide a formal definition of (read-only) DB-schemas by relying on an algebraic,
functional characterization, and derive some key model-theoretic properties.

Definition 3.1. A DB schema is a pair 〈Σ, T 〉, where: (i) Σ is a DB signature, that is, a
finite multi-sorted signature whose only symbols are equality, unary functions, and constants;
(ii) T is a DB theory, that is, a set of universal Σ-sentences.

1Arity and source/target sorts for F can be deduced from the context (considering that everything is
well-typed).
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Next, we refer to a DB schema simply through its (DB) signature Σ and (DB) theory T ,
and denote by Σsrt the set of sorts and by Σfun the set of functions in Σ. Since Σ contains only
unary function symbols and equality, all atomic Σ-formulae are of the form t1(v1) = t2(v2),
where t1, t2 are possibly complex terms, and v1, v2 are either variables or constants.

Remark 3.1. If desired, we can freely extend DB schemas by adding arbitrary n-ary relation
symbols to the signature Σ. For this purpose, we give the following definition.

Definition 3.2. A DB extended-schema is a pair 〈Σ, T 〉, where: (i) Σ is a DB extended-
signature, that is, a finite multi-sorted signature whose only symbols are equality, n-ary re-
lations, unary functions, and constants; (ii) T is a DB extended-theory, that is, a set of
universal Σ-sentences.

Since for our application we are only interested in relations with primary and foreign key
dependencies (even if our implementation takes into account also the case of “free” relations,
i.e. without key dependencies), we restrict our focus on DB schemas, which are sufficient to
capture those constraints (as explained in the following subsection). We notice that, in case
Assumption 3.4 discussed below holds for DB extended-theories, all the results presented in
Section 4 (and Theorem 5.1) still hold even considering DB extended-schemas instead of DB
schemas.

We associate to a DB signature Σ a characteristic graph G(Σ) capturing the dependencies
induced by functions over sorts.2 Specifically, G(Σ) is an edge-labeled graph whose set of
nodes is Σsrt , and with a labeled edge S f−→ S′ for each f : S −→ S′ in Σfun . We say that Σ is
acyclic if G(Σ) is so. The leaves of Σ are the nodes of G(Σ) without outgoing edges. These
terminal sorts are divided in two subsets, respectively representing unary relations and value
sorts. Non-value sorts (i.e., unary relations and non-leaf sorts) are called id sorts, and are
conceptually used to represent (identifiers of) different kinds of objects. Value sorts, instead,
represent datatypes such as strings, numbers, clock values, etc. We denote the set of id sorts
in Σ by Σids , and that of value sorts by Σval , hence Σsrt = Σids ] Σval .

We now consider extensional data.

Definition 3.3. A DB instance of DB schema 〈Σ, T 〉 is a Σ-structure M that is a model of
T and such that every id sort of Σ is interpreted inM on a finite set.

Contrast this to arbitrary models of T , where no finiteness assumption is made. What
may appear as not customary in Definition 3.3 is the fact that value sorts can be interpreted
on infinite sets. This allows us, at once, to reconstruct the classical notion of DB instance as a
finite model (since only finitely many values can be pointed from id sorts using functions), at
the same time supplying a potentially infinite set of fresh values to be dynamically introduced
in the working memory during the evolution of the artifact system. More details on this will
be given in Section 3.1.

We respectively denote by SM, fM, and cM the interpretation inM of the sort S (this is
a set), of the function symbol f (this is a set-theoretic function), and of the constant c (this
is an element of the interpretation of the corresponding sort). Obviously, fM and cM must
match the sorts in Σ. E.g., if f has source S and target U , then fM has domain SM and
range UM.

2The same definition can be adopted also for extended DB signatures (relation symbols do not play a role
in it).
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UserId userName

EmpId empName

CompInId who
what

JobCatId jobCatDescr

String

id : UserId userName : StringUser

id : EmpId empName : StringEmployee

id : CompInId who : EmpId what : JobCatIdCompetentIn

id : JobCatId jobCatDescr : StringJobCategory

Figure 1: On the left: characteristic graph of the human resources DB signature from Exam-
ple 3.1. On the right: relational view of the DB signature; each cell denotes an attribute with
its type, underlined attributes denote primary keys, and directed edges capture foreign keys.

Example 3.1. The human resource (HR) branch of a company stores the following information
inside a relational database: (i) users registered to the company website, who are potential
job applicants; (ii) the different, available job categories; (iii) employees belonging to HR,
together with the job categories they are competent in. To formalize these different aspects,
we make use of a DB signature Σhr consisting of: (i) four id sorts, used to respectively identify
users, employees, job categories, and the competence relationship connecting employees to
job categories; (ii) one value sort containing strings used to name users and employees, and
describe job categories. In addition, Σhr contains five function symbols mapping: (i) user
identifiers to their corresponding names; (ii) employee identifiers to their corresponding names;
(iii) job category identifiers to their corresponding descriptions; (iv) competence identifiers to
their corresponding employees and job categories. The characteristic graph of Σhr is shown
in Figure 1 (left part). /

We close the formalization of DB schemas by discussing DB theories, whose role is to
encode background axioms. We illustrate a typical background axiom, required to handle the
possible presence of undefined identifiers/values in the different sorts. This axiom is essential
to capture artifact systems whose working memory is initially undefined, in the style of [27, 37].
To specify an undefined value we add to every sort S of Σ a constant undefS (written from
now on, by abuse of notation, just as undef, used also to indicate a tuple). Then, for each
function symbol f of Σ, we add the following axiom to the DB theory:

∀x (x = undef↔ f(x) = undef) (1)

This axiom states that the application of f to the undefined value produces an undefined
value, and it is the only situation for which f is undefined.

Remark 3.2. In the artifact-centric model in the style of [27, 37] that we intend to capture,
the DB theory consists of Axioms (1) only. However, our technical results do not require this
specific choice, and more general sufficient conditions will be discussed later. These conditions
apply to natural variants of Axiom (1) (such variants might be used to model situations where
we would like to have for instance many undefined values).

3.1 Relational View of DB Schemas

We now clarify how the algebraic, functional characterization of DB schema and instance can
be actually reinterpreted in the classical, relational model. Definition 3.1 naturally corre-
sponds to the definition of relational database schema equipped with single-attribute primary
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keys and foreign keys (plus a reformulation of constraint (1)). To technically explain the
correspondence, we adopt the named perspective, where each relation schema is defined by
a signature containing a relation name and a set of typed attribute names. Let 〈Σ, T 〉 be a
DB schema. Each id sort S ∈ Σids corresponds to a dedicated relation RS with the following
attributes: (i) one identifier attribute idS with type S; (ii) one dedicated attribute af with
type S′ for every function symbol f ∈ Σfun of the form f : S −→ S′.

The fact that RS is built starting from functions in Σ naturally induces different database
dependencies in RS . In particular, for each non-id attribute af of RS , we get a functional
dependency from idS to af ; altogether, such dependencies in turn witness that idS is the
(primary) key of RS . In addition, for each non-id attribute af of RS whose corresponding
function symbol f has id sort S′ as image, we get an inclusion dependency from af to the id
attribute idS′ of RS′ ; this captures that af is a foreign key referencing RS′ .

Example 3.2. The diagram on the right in Figure 1 graphically depicts the relational view
corresponding to the DB signature of Example 3.1. /

Given a DB instanceM of 〈Σ, T 〉, its corresponding relational instance I is the minimal
set satisfying the following property: for every id sort S ∈ Σids , let f1, . . . , fn be all functions
in Σ with domain S; then, for every identifier o ∈ SM, I contains a labeled fact of the form
RS(idS : oM, af1 : fM1 (oM), . . . , afn : fMn (oM)). With this interpretation, the active domain of
I is the set

⋃
S∈Σids

(SM \ {undefM}) ∪

v ∈ ⋃
V ∈Σval

VM
∣∣∣∣ v 6= undefM and there exist f ∈ Σfun

and o ∈ dom(fM) s.t. fM(o) = v


consisting of all (proper) identifiers assigned byM to id sorts, as well as all values obtained in
M via the application of some function. Since such values are necessarily finitely many, one
may wonder why in Definition 3.3 we allow for interpreting value sorts over infinite sets. The
reason is that, in our framework, an evolving artifact system may use such infinite provision
to inject and manipulate new values into the working memory. From the definition of active
domain above, exploiting Axioms (1) we get that the membership of a tuple (x0, . . . , xn) to a
generic n + 1-ary relation RS with key dependencies (corresponding to an id sort S) can be
expressed in our setting by using just unary function symbols and equality:

RS(x0, . . . , xn) iff x0 6= undef ∧ x1 = f1(x0) ∧ · · · ∧ xn = fn(x0) (2)

Hence, the representation of negated atoms is the one that directly follows from negat-
ing (2):

¬RS(x0, . . . , xn) iff x0 = undef ∨ x1 6= f1(x0) ∨ · · · ∨ xn 6= fn(x0) (3)

This relational interpretation of DB schemas exactly reconstructs the requirements posed
by [27, 37] on the schema of the read-only database: (i) each relation schema has a single-
attribute primary key; (ii) attributes are typed; (iii) attributes may be foreign keys referencing
other relation schemas; (iv) the primary keys of different relation schemas are pairwise disjoint.

We stress that all such requirements are natively captured in our functional definition of a
DB signature, and do not need to be formulated as axioms in the DB theory. The DB theory is
used to express additional constraints, like that in Axiom (1). In the following subsection, we
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thoroughly discuss which properties must be respected by signatures and theories to guarantee
that our verification machinery is well-behaved.

One may wonder why we have not directly adopted a relational view for DB schemas. This
will become clear during the technical development. We anticipate the main, intuitive reasons.
First, our functional view allows us to reconstruct in a single, homogeneous framework, some
important results on verification of artifact systems, achieved on different models that have
been unrelated so far [12, 27]. Second, our functional view makes the dependencies among
different types explicit. In fact, our notion of characteristic graph, which is readily computed
from a DB signature, exactly reconstructs the central notion of foreign key graph used in [27]
towards the main decidability results. Finally, we underline, once again, that free n-ary
relation symbols can be added to our signatures (see Remark 3.1 and Definition 3.2 above)
without compromising the results underlying our techniques.

Remark 3.3. In some situations, it is useful to have many undefined keys and possibly also
incomplete relations with some undefined values. In such cases, then one can only assume the
left-to-right side of (1), which is equivalent to the ground axiom

f(undef) = undef (4)

In order to preserve the condition of being a foreign key (i.e., the requirement that, for each
non-id attribute af of a relation RS whose corresponding function symbol f has id sort S′ as
image, we want an inclusion dependency from af to the id attribute idS′ of the relation RS′),
the axioms

∀x (f(x) 6= undef→ g(f(x)) 6= undef) (5)

are also needed.

3.2 Formal Properties of DB Schemas

The theory T from Definition 3.1 must satisfy few crucial requirements for our approach to
work. In this section, we define such requirements and show that they are matched, e.g., when
the signature Σ is acyclic (as in [37]) and T consists of Axioms (1) only. Actually, acyclicity
is a stronger requirement than needed, which, however, simplifies our exposition.

Finite Model Property. A Σ-formula φ is a Σ-constraint (or just a constraint) iff it is a
conjunction of literals. The constraint satisfiability problem for T asks: given an existential
formula ∃y φ(x, y) (with φ a constraint3), are there a modelM of T and an assignment α to
the free variables x such thatM, α |= ∃y φ(x, y)?

We say that T has the finite model property (for constraint satisfiability) iff every constraint
φ that is satisfiable in a model of T is satisfiable in a DB instance of T .4 The finite model
property implies decidability of the constraint satisfiability problem in case T is recursively
axiomatized. The following is proved in Appendix B:

Proposition 3.1. T has the finite model property in case Σ is acyclic.

Quantifier Elimination. A Σ-theory T has quantifier elimination iff for every Σ-formula
φ(x) there is a quantifier-free formula φ′(x) such that T |= φ(x) ↔ φ′(x). It is known

3For the purposes of this definition, we may equivalently take φ to be quantifier-free.
4This directly implies that φ is satisfiable also in a DB instance that interprets value sorts into finite sets.
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that quantifier elimination holds if quantifiers can be eliminated from primitive formulae,
i.e., formulae of the kind ∃y φ(x, y), with φ a constraint. We assume that when quantifier
elimination is considered, there is an effective procedure that eliminates quantifiers.

A DB theory T does not necessarily have quantifier elimination; it is however often pos-
sible to strengthen T in a conservative way (with respect to constraint satisfiability) and get
quantifier elimination. We say that T has a model completion iff there is a stronger theory
T ∗ ⊇ T (still within the same signature Σ of T ) such that (i) every Σ-constraint satisfiable
in a model of T is also so in a model of T ∗; (ii) T ∗ has quantifier elimination. T ∗ is called a
model completion of T .

Proposition 3.2. T has a model completion in case it is axiomatized by universal one-variable
formulae and Σ is acyclic.

In Appendix B we prove the above proposition and give an algorithm for quantifier elimina-
tion. This algorithm can be improved (and behaves much better than their linear arithmetics
counterparts) using a suitable version of the Knuth-Bendix procedure [9] (studied in a dedi-
cated paper [18], even if our mcmt implementation already partially takes into account such
future development). Moreover, acyclicity is not needed in general: when, for instance, T := ∅
or when T contains only Axioms (1), a model completion can be proved to exist, even if Σ is
not acyclic, by using the Knuth-Bendix version of the quantifier elimination algorithm.

Remark 3.4. Proposition 3.2 holds also for DB extended-schemas, in case the universal one-
variable formulae do not involve the relation symbols (so, the relations are “free”): as explained
in [18], our implementation of the quantifier elimination algorithm takes into account also
this case. More generally, the model completion exists whenever we consider an acyclic DB
extended-schema with a DB extended-theory T that enjoys the amalgamation property.

Hereafter, we make the following assumption:

Assumption 3.4. The DB theories we consider have decidable constraint satisfiability prob-
lem, finite model property, and admit a model completion.

This assumption is matched, for instance, in the following three cases: (i) when T is empty;
(ii) when T is axiomatized by Axioms (1); (iii) when Σ is acyclic and T is axiomatized by
finitely many universal one-variable formulae (such as Axioms (1),(4),(5), etc.).

Remark 3.5. Notice that the DB extended-schemas obtained by adding “free” relations to the
DB schemas of (i), (ii), (iii) above match Assumption 3.4.

4 Relational Artifact Systems

We are now in the position to define our formal model of Relational Artifact Systems (RASs),
and to study parameterized safety problems over RASs. Since RASs are array-based systems,
we start by recalling the intuition behind them.

In general terms, an array-based system is described using a multi-sorted theory that
contains two types of sorts, one accounting for the indexes of arrays, and the other for the
elements stored therein. Since the content of an array changes over time, it is referred to using
a second-order function variable, whose interpretation in a state is that of a total function
mapping indexes to elements (so that applying the function to an index denotes the classical
read operation for arrays). The definition of an array-based system with array state variable
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a always requires: a formula I(a) describing the initial configuration of the array a, and a
formula τ(a, a′) describing a transition that transforms the content of the array from a to a′.
In such a setting, verifying whether the system can reach unsafe configurations described by a
formulaK(a) amounts to check whether the formula I(a0)∧τ(a0, a1)∧· · ·∧τ(an−1, an)∧K(an)
is satisfiable for some n. Next, we make these ideas formally precise by grounding array-based
systems in the artifact-centric setting.

The RAS Formal Model. Following the tradition of artifact-centric systems [26, 23, 12, 27],
a RAS consists of a read-only DB, a read-write working memory for artifacts, and a finite set
of actions (also called services) that inspect the relational database and the working memory,
and determine the new configuration of the working memory. In a RAS, the working memory
consists of individual and higher order variables. These variables (usually called arrays) are
supposed to model evolving relations, so-called artifact relations in [27, 37]. The idea is to
treat artifact relations in a uniform way as we did for the read-only DB: we need extra sort
symbols (recall that each sort symbol corresponds to a database relation symbol) and extra
unary function symbols, the latter being treated as second-order variables.

Given a DB schema Σ, an artifact extension of Σ is a signature Σext obtained from Σ
by adding to it some extra sort symbols5. These new sorts (usually indicated with letters
E,F, . . . ) are called artifact sorts (or artifact relations by some abuse of terminology), while
the old sorts from Σ are called basic sorts. In RAS, artifacts and basic sorts correspond,
respectively, to the index and the elements sorts mentioned in the literature on array-based
systems. Below, given 〈Σ, T 〉 and an artifact extension Σext of Σ, when we speak of a Σext -
model of T , a DB instance of 〈Σext , T 〉, or a Σext -model of T ∗, we mean a Σext -structureM
whose reduct to Σ respectively is a model of T , a DB instance of 〈Σ, T 〉, or a model of T ∗.

An artifact setting over Σext is a pair (x, a) given by a finite set x of individual variables
and a finite set a of unary function variables: the latter are required to have an artifact sort
as source sort and a basic sort as target sort. Variables in x are called artifact variables, and
variables in a artifact components. Given a DB instance M of Σext , an assignment to an
artifact setting (x, a) over Σext is a map α assigning to every artifact variable xi ∈ x of sort
Si an element xα ∈ SMi and to every artifact component aj : Ej −→ Uj (with aj ∈ a) a
set-theoretic function aαj : EMj −→ UMj . In RAS, artifact components and artifact variables
correspond, respectively, to arrays and constant arrays (i.e., arrays with all equal elements)
mentioned in the literature on array-based systems.

We can view an assignment to an artifact setting (x, a) as a DB instance extending the
DB instance M as follows. Let all the artifact components in (x, a) having source E be
ai1 : E −→ S1, · · · , ain : E −→ Sn. Viewed as a relation in the artifact assignment (M, α),
the artifact relation E “consists” of the set of tuples {〈e, aαi1(e), . . . , aαin(e)〉 | e ∈ EM}. Thus
each element of E is formed by an “entry” e ∈ EM (uniquely identifying the tuple) and by
“data” aαi (e) taken from the read-only databaseM. When the system evolves, the set EM of
entries remains fixed, whereas the components aαi (e) may change: typically, we initially have
aαi (e) = undef, but these values are changed when some defined values are inserted into the
relation modeled by E; the values are then repeatedly modified (and possibly also reset to
undef, if the tuple is removed and e is re-set to point to undefined values)6.

5By ‘signature’ we always mean ’signature with equality’, so as soon as new sorts are added, the corre-
sponding equality predicates are added too.

6In accordance with mcmt conventions, we denote the application of an artifact component a to a term
(i.e., constant or variable) v also as a[v] (standard notation for arrays), instead of a(v).
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4 RELATIONAL ARTIFACT SYSTEMS

In order to introduce verification problems in the symbolic setting of array-based systems,
one first has to specify which formulae are used to represent sets of states, the system ini-
tializations, and system evolution. To introduce RASs we discuss the kind of formulae we
use. In such formulae, we use notations like φ(z, a) to mean that φ is a formula whose free
individual variables are among the z and whose free unary function variables are among the a.
Let (x, a) be an artifact setting over Σext , where x = x1, . . . , xn are the artifact variables and
a = a1, . . . , am are the artifact components (their source and target sorts are left implicit).

An initial formula is a formula ι(x) of the form7 (
∧n
i=1 xi = ci)∧ (

∧m
j=1 aj = λy.dj), where

ci, dj are constants from Σ (typically, ci and dj are undef). A state formula has the form
∃e φ(e, x, a), where φ is quantifier-free and the e are individual variables of artifact sorts. A
transition formula τ̂ has the form

∃e (γ(e, x, a) ∧
∧
i x
′
i = Fi(e, x, a) ∧

∧
j a
′
j = λy.Gj(y, e, x, a)) (6)

where the e are individual variables (of both basic and artifact sorts), γ (the ‘guard’) is
quantifier-free, x′, a′ are renamed copies of x, a, and the Fi, Gj (the ‘updates’) are case-
defined functions. Transition formulae as above can express, e.g., (i) insertion (with/without
duplicates) of a tuple in an artifact relation, (ii) removal of a tuple from an artifact relation,
(iii) transfer of a tuple from an artifact relation to artifact variables (and vice-versa), and
(iv) bulk removal/update of all the tuples satisfying a certain condition from an artifact
relation. All the above operations can also be constrained: the formalization of the above
operations in the formalism of our transition is straightforward (the reader can see all the
details in Appendix F).

Definition 4.1. A Relational Artifact System (RAS) is

S = 〈Σ, T,Σext , x, a, ι(x, a), τ(x, a, x′, a′)〉

where: (i) 〈Σ, T 〉 is a (read-only) DB schema, (ii) Σext is an artifact extension of Σ, (iii) (x, a)
is an artifact setting over Σext , (iv) ι is an intitial formula, and (v) τ is a disjunction of
transition formulae.

Example 4.1. We present here a RAS Shr containing a multi-instance artifact accounting
for the evolution of job applications. Each job category may receive multiple applications
from registered users. Such applications are then evaluated, finally deciding which to accept
or reject. The example is inspired by the job hiring process presented in [42] to show the
intrinsic difficulties of capturing real-life processes with many-to-many interacting business
entities using conventional process modeling notations (e.g., BPMN). An extended version of
this example is presented in Appendix A.1.

As for the read-only DB, Shr works over the DB schema of Example 3.1, extended with
a further value sort Score used to score job applications. Score contains 102 values in the
range [-1, 100], where -1 denotes the non-eligibility of the application, and a score from 0 to
100 indicates the actual one assigned after evaluating the application. For readability, we use
as syntactic sugar usual predicates <, >, and = to compare variables of type Score.

As for the working memory, Shr consists of two artifacts. The first single-instance job
hiring artifact employs a dedicated pState variable to capture main phases that the running
process goes through: initially, hiring is disabled (pState = undef), and, if there is at least

7Recall that aj = λy.dj abbreviates ∀y aj(y) = dj .
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4 RELATIONAL ARTIFACT SYSTEMS

one registered user in the HR DB, pState becomes enabled. The second multi-instance ar-
tifact accounts for the evolution of of user applications. To model applications, we take the
DB signature Σhr of the read-only HR DB, and enrich it with an artifact extension contain-
ing an artifact sort appIndex used to index (i.e., “internally” identify) job applications. The
management of job applications is then modeled by an artifact setting with: (i) artifact com-
ponents with domain appIndex capturing the artifact relation storing different job applications;
(ii) additional individual variables as temporary memory to manipulate the artifact relation.
Specifically, each application consists of a job category, the identifier of the applicant user and
that of an HR employee responsible for the application, the application score, and the final
result (indicating whether the application is accepted or not). These information slots are en-
capsulated into dedicated artifact components, i.e., function variables with domain appIndex
that collectively realize the application artifact relation:

appJobCat : appIndex −→ JobCatId appScore : appIndex −→ Score
applicant : appIndex −→ UserId appResp : appIndex −→ EmpId
appResult : appIndex −→ String

We now discuss the relevant transitions for inserting and evaluating job applications. When
writing transition formulae, we make the following assumption: if an artifact variable/com-
ponent is not mentioned at all, it is meant that is updated identically; otherwise, the relevant
update function will specify how it is updated.8 The insertion of an application into the system
can be executed when the hiring process is enabled, and consists of two consecutive steps. To
indicate when a step can be applied, also ensuring that the insertion of an application is not
interrupted by the insertion of another one, we manipulate a string artifact variable aState.
The first step is executable when aState is undef, and aims at loading the application data
into dedicated artifact variables through the following simultaneous effects: (i) the identifier
of the user who wants to submit the application, and that of the targeted job category, are
selected and respectively stored into variables uId and jId ; (ii) the identifier of an HR em-
ployee who becomes responsible for the application is selected and stored into variable eId ,
with the requirement that such an employee must be competent in the job category targeted
by the application; (iii) aState evolves into state received. Formally:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId(
pState = enabled ∧ aState = undef ∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef ∧ who(c) = e
∧ what(c) = j ∧ pState ′ = enabled ∧ aState ′ = received ∧ uId ′ = u ∧ jId ′ = j ∧ eId ′ = e ∧ cId ′ = c

)
The second step transfers the application data into the application artifact relation (us-

ing its corresponding function variables), and resets all application-related artifact variables
to undef (including aState, so that new applications can be inserted). For the insertion, a
“free” index (i.e., an index pointing to an undefined applicant) is picked. The newly inserted
application gets a default score of -1 (“not eligible”), and an undef final result:

∃i:appIndex
pState = enabled ∧ aState = received ∧ applicant [i] = undef ∧ pState′ = enabled ∧ aState′ = undef ∧ cId ′ = undef
∧ appJobCat ′ = λj. (if j = i then jId else appJobCat [j]) ∧ applicant ′ = λj. (if j = i then uId else applicant [j])
∧ appResp′ = λj. (if j = i then eId else appResp[j]) ∧ appScore′ = λj. (if j = i then -1 else appScore[j])
∧ appResult ′ = λj. (if j = i then undef else appResult [j]) ∧ jId ′ = undef ∧ uId ′ = undef ∧ eId ′ = undef


Notice that such a transition does not prevent the possibility of inserting exactly the same
application twice, at different indexes. If this is not wanted, the transition can be suitably

8Non-deterministic updates can be formalized using existentially quantified variables in the transition.
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4 RELATIONAL ARTIFACT SYSTEMS

changed so as to guarantee that no two identical applications can coexist in the same artifact
relation (see Appendix A.1 for an example).

Each application currently considered as not eligible can be made eligible by assigning a
proper score to it:

∃i:appIndex, s:Score

pState = enabled ∧ aState = undef
appScore[i] = -1 ∧ aState ′ = undef
s ≥ 0 ∧ pState ′ = enabled ∧ appScore ′[i] = s


Finally, application results are computed when the process moves to state notified. This is
handled by the bulk transition:

pState = enabled ∧ aState = undef
∧pState ′ = notified ∧ aState ′ = undef

∧appResult ′ = λj.

(
if appScore[j] > 80 then winner
else loser

)
which declares applications with a score above 80 as winning, and the others as losing. /

Parameterized Safety via Backward Reachability. A safety formula for S is a state
formula υ(x) describing undesired states of S. As usual in array-based systems, we say that
S is safe with respect to υ if intuitively the system has no finite run leading from ι to υ.
Formally, there is no DB-instanceM of 〈Σext , T 〉, no k ≥ 0, and no assignment inM to the
variables x0, a0 . . . , xk, ak such that the formula

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak) (7)

is true inM (here xi, ai are renamed copies of x, a). The safety problem for S is the following:
given a safety formula υ decide whether S is safe with respect to υ.

Example 4.2. The following property expresses the undesired situation that, in the RAS from
Example 4.1, once the evaluation is notified there is an applicant with unknown result:

∃i:appIndex(
pState = notified ∧ applicant [i] 6= undef ∧ appResult [i] 6= winner ∧ appResult [i] 6= loser

)
The job hiring RAS Shr turns out to be safe with respect to this property (cf. Section 6). /

Algorithm 1 describes the backward reachability algorithm (or, backward search) for han-
dling the safety problem for S. An integral part of the algorithm is to compute symbolic
preimages. For that purpose, we define for any φ1(z, z′) and φ2(z), Pre(φ1, φ2) as the formula
∃z′(φ1(z, z′) ∧ φ2(z′)). The preimage of the set of states described by a state formula φ(x)
is the set of states described by Pre(τ, φ).9 QE(T ∗, φ) in Line 6 is a subprocedure that ex-
tends the quantifier elimination algorithm of T ∗ so as to convert the preimage Pre(τ, φ) of a
state formula φ into a state formula (equivalent to it modulo the axioms of T ∗), witnessing
its regressability : this is possible since T ∗ eliminates from primitive formulae the existentially
quantified variables over the basic sorts, whereas elimination of quantified variables over arti-
fact sorts is not possible, because these variables occur as arguments of artifact components
(see Lemma D.1 and Lemma D.2 in Appendix D for more details). Algorithm 1 computes
iterated preimages of υ and applies to them the above explained quantifier elimination over

9Notice that, when τ =
∨
τ̂ , then Pre(τ, φ) =

∨
Pre(τ̂ , φ).
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5 TERMINATION RESULTS FOR RASs

basic sorts, until a fixpoint is reached or until a set intersecting the initial states (i.e., satisfying
ι) is found.10 We obtain the following theorem, proved in Appendix D:

Theorem 4.2. Backward search (cf. Algorithm 1) is effective and partially correct11 for solving
safety problems for RASs.

Proof sketch. Algorithm 1, to be effective, requires the availability of decision procedures for
discharging the satisfiability tests in Lines 2-3. Thanks to the subprocedure QE(T ∗, φ), the
only formulae we need to test in these lines have a specific form (i.e. ∃∀-formulae12). By
our hypotheses in Assumption 3.4, we can freely assume that all the runs we are interested
in take place inside models of T ∗ (where we can eliminate quantifiers binding variables of
basic sorts): in fact, a technical lemma (Lemma D.3) shows that formulae of the kind ∃∀ are
satisfiable in a model of T iff they are satisfiable in a DB instance iff they are satisfiable in
a model of T ∗. The fact that a preimage of a state formula is a state formula is exploited to
make both safety and fixpoint tests effective (in fact, we prove that the entailment between
state formulae - and more generally satisfiability of ∃∀ sentences - can be decided via finite
instantiation techniques).

Algorithm 1: Schema of the
backward reachability algorithm
Function BReach(υ)

1 φ←− υ; B ←− ⊥;
2 while φ ∧ ¬B is T -satisfiable

do
3 if ι ∧ φ is T -satisfiable

then
return unsafe

4 B ←− φ ∨B;
5 φ←− Pre(τ, φ);
6 φ←− QE(T ∗, φ);

return (safe, B);

Theorem 4.2 shows that backward search is a
semi-decision procedure: if the system is unsafe,
backward search always terminates and discovers
it; if the system is safe, the procedure can diverge
(but it is still correct). Notice that the role of
quantifier elimination (Line 6 of Algorithm 1) is
twofold: (i) It allows to discharge the fixpoint test
of Line 2 (see Lemma D.3). (ii) It ensures termi-
nation in significant cases, namely those where
(strongly) local formulae, introduced in the next
section, are involved.

5 Termination Results for RASs

We now present three termination results, two relating RASs to fundamental previous results,
and one genuinely novel. All the proofs are given in the appendix.

Termination for “Simple” Artifact Systems. An interesting class of RASs is the one
where the working memory consists only of artifact variables (without artifact relations). We
call systems of this type SASs (Simple Artifact Systems). For SASs, the following termination
result holds.

10Inclusion (Line 2) and disjointness (Line 3) tests can be discharged via proof obligations to be handled by
SMT solvers. The fixpoint is reached when the test in Line 2 returns unsat, which means that the preimage
of the set of the current states is included in the set of states reached by the backward search so far.

11Partial correctness means that, when the algorithm terminates, it gives a correct answer. Effectiveness
means that all subprocedures in the algorithm can be effectively executed.

12As defined in Appendix D, we call ∃∀-formulae the ones of the kind ∃e ∀i φ(e, i, x, a), where e, i are
variables whose sort is an artifact sort and φ is quantifier-free.
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Theorem 5.1. Let 〈Σ, T 〉 be a DB schema with Σ acyclic. Then, for every SAS S =
〈Σ, T, x, ι, τ〉, backward search terminates and decides safety problems for S in Pspace in
the combined size of x, ι, and τ .

Remark 5.1. We remark that Theorem 5.1 holds also for DB extended-schemas (so, even
adding “free relations” to the DB signatures). Moreover, notice that it can be shown that
every existential formula φ(x, x′) can be turned into the form of Formula (12). Furthermore, we
highlight that the proof of the decidability result of Theorem 5.1 requires that the considered
background theory T : (i) admits a model completion; (ii) is locally finite, i.e., up to T -
equivalence, there are only finitely many atoms involving a fixed finite number of variables (this
condition is implied by acyclicity); (iii) is universal; and (iv) enjoys decidability of constraint
satisfiability. Conditions (iii) and (iv) imply that one can decide whether a finite structure is a
model of T . If (ii) and (iii) hold, it is well-known that (i) is equivalent to amalgamation [44].
Moreover, (ii) alone always holds for relational signatures and (iii) is equivalent to T being
closed under substructures (this is a standard preservation theorem in model theory [21]). It
follows that arbitrary relational signatures (or locally finite theories in general, even allowing
n-ary relation and n-ary function symbols) require only amalgamability and closure under
substructures. Thanks to these observations, Theorem 5.1 is reminiscent of an analogous
result in [12], i.e., Theorem 5, the crucial hypotheses of which are exactly amalgamability
and closure under substructures, although the setting in that paper is different (there, key
dependencies are not discussed, whereas we are interested only in DB (extended-)theories).

In our first-order setting, we can perform verification in a purely symbolic way, using
(semi-)decision procedures provided by SMT-solvers, even when local finiteness fails. As
mentioned before, local finiteness is guaranteed in the relational context, but it does not
hold anymore when arithmetic operations are introduced. Note that the theory of a single
uninterpreted binary relation (i.e., the theory of directed graphs) has a model completion,
whereas it can be easily seen that the theory of one binary relation endowed with primary
key dependencies (i.e. the theory of a binary relation which is a partial function) has not,
since it is not amalgamable. So, the second distinctive feature of our setting naturally follows
from this observation: thanks to our functional representation of DB schemas (with keys),
the amalgamation property, required by Theorem 5.1, holds, witnessing that our framework
remains well-behaved even in the presence of key dependencies.

Termination with Local Updates. Consider an acyclic signature Σ, a DB theory T (sat-
isfying our Assumption 3.4), and an artifact setting (x, a) over an artifact extension Σext of
Σ. We call a state formula local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧
∧k
i=1 φi(ei, x, a)), (8)

and strongly local if it is a disjunction of the formulae

∃e1 · · · ∃ek (δ(e1, . . . , ek) ∧ ψ(x) ∧
∧k
i=1 φi(ei, a)). (9)

In (8) and (9), δ is a conjunction of variable equalities and inequalities, φi, ψ are quantifier-
free, and e1, . . . , ek are individual variables varying over artifact sorts. The key limitation
of local state formulae is that they cannot compare entries from different tuples of artifact
relations: each φi in (8) and (9) can contain only the existentially quantified variable ei.

A transition formula τ̂ is local (resp., strongly local) if whenever a formula φ is local (resp.,
strongly local), so is Pre(τ̂ , φ) (modulo the axioms of T ∗). Examples of (strongly) local τ̂ are
discussed in Appendix F.
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Theorem 5.2. If Σ is acyclic, backward search (cf. Algorithm 1) terminates when applied to
a local safety formula in a RAS whose τ is a disjunction of local transition formulae.

Proof sketch. Let Σ̃ be Σext∪{a, x}, i.e., Σext expanded with function symbols a and constants
x (a and x are treated as symbols of Σ̃, but not as variables anymore). We call a Σ̃-structure
cyclic13 if it is generated by one element belonging to the interpretation of an artifact sort.
Since Σ is acyclic, so is Σ̃, and then one can show that there are only finitely many cyclic
Σ̃-structures C1, . . . , CN up to isomorphism. With a Σ̃-structure M we associate the tuple
of numbers k1(M), . . . , kN (M) ∈ N ∪ {∞} counting the numbers of elements generating (as
singletons) the cyclic substructures isomorphic to C1, . . . , CN , respectively. Then we show that,
if the tuple associated withM is componentwise bigger than the one associated with N , then
M satisfies all the local formulae satisfied by N . Finally we apply Dikson Lemma [9].

Note that Theorem 5.2 can be used to reconstruct the decidability results of [37] concern-
ing safety problems. Specifically, one needs to show that transitions in [37] are strongly local
which, in turn, can be shown using quantifier elimination (see Appendix F for more details).
Interestingly, Theorem 5.2 can be applied to more cases not covered in [37]. For example, one
can provide transitions enforcing updates over unboundedly many tuples (bulk updates) that
are strongly local (cf. Appendix F). One can also see that the safety problem for our running
example is decidable since all its transitions are strongly local. Another case considers cover-
ability problems for broadcast protocols [30, 25], which can be encoded using local formulae
over the trivial one-sorted signature containing just one basic sort, finitely many constants
and one artifact sort with one artifact component. These problems can be decided with a
non-primitive recursive lower bound [41] (whereas the problems in [37] have an ExpSpace
upper bound). Recalling that [37] handles verification of LTL-FO, thus going beyond safety
problems, this shows that the two settings are incomparable. Notice that Theorem 5.2 implies
also the decidability of the safety problem for SASs, in case of Σ acyclic.

Termination for Tree-like Signatures. Σ is tree-like if it is acyclic and all non-leaf nodes
have outdegree 1. An artifact setting over Σ is tree-like if Σ̃ := Σext ∪ {a, x} is tree-like. In
tree-like artifact settings, artifact relations have a single “data” component, and basic relations
are unary or binary.

Theorem 5.3. Backward search (cf. Algorithm 1) terminates when applied to a safety problem
in a RAS with a tree-like artifact setting.

Proof sketch. The crux is to show, using Kruskal’s Tree Theorem [35], that the finitely gener-
ated Σ̃-structures are a well-quasi-order w.r.t. the embeddability partial order.

While tree-like RAS restrict artifact relations to be unary, their transitions are not subject
to any locality restriction. This allows for expressing rich forms of updates, including general
bulk updates (which allow us to capture non-primitive recursive verification problems) and
transitions comparing at once different tuples in artifact relations. Notice that tree-like RASs
are incomparable with the “tree” classes of [12], since the former use artifact relations, whereas
the latter only individual variables. In Appendix A we show the power of such advanced
features in a flight management process example.

13This is unrelated to cyclicity of Σ defined in Section 3, and comes from universal algebra terminology.
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7 CONCLUSION

6 First experiments

We implemented a prototype of the backward reachability algorithm for RASs on top of the
mcmt model checker for array-based systems. Starting from its first version [33], mcmt
was successfully applied to a variety of settings: cache coherence and mutual exclusions
protocols [32], timed [19] and fault-tolerant [6, 5] distributed systems, and imperative pro-
grams [7, 8]. Interesting case studies concerned waiting time bounds synthesis in parameter-
ized timed networks [15] and internet protocols [14]. Further related tools include safari [3],
asasp [2], and Cubicle [22]. The latter relies on a parallel architecture with further powerful
extensions. The work principle of mcmt is rather simple: the tool generates the proof obliga-
tions arising from the safety and fixpoint tests in backward search (Lines 2-3 of Algorithm 1)
and passes them to the background SMT-solver (currently it is Yices [29]). In practice, the
situation is more complicated because SMT-solvers are quite efficient in handling satisfiabil-
ity problems in combined theories at quantifier-free level, but may encounter difficulties with
quantifiers. For this reason, mcmt implements modules for quantifier elimination and quan-
tifier instantiation. A specific module for the quantifier elimination problems mentioned in
Line 6 of Algorithm 1 has been added to Version 2.8 of mcmt.

We produced a benchmark consisting of eight realistic business process examples and
ran it in mcmt (detailed explanations and results are given in Appendix G). The examples
are partially made by hand and partially obtained from those supplied in [37]. A thorough
comparison with Verifas [37] is matter of future work, and is non-trivial for a variety of
reasons. In particular, the two systems tackle incomparable verification problems: on the
one hand, we deal with safety problems, whereas Verifas handles more general LTL-FO
properties. On the other hand, we tackle features not available in Verifas, like bulk updates
and comparisons between artifact tuples. Moreover, the two verifiers implement completely
different state space construction strategies: mcmt is based on backward reachability and
makes use of declarative techniques that rely on decision procedures, while Verifas employs
forward search via VASS encoding.

The benchmark is available as part of the last distribution 2.8 of mcmt.14 Table 1 shows
the very encouraging results (the first row tackles Example 4.2). While a systematic evaluation
is out of scope, mcmt effectively handles the benchmark with a comparable performance shown
in other, well-studied systems, with verification times below 1s in most cases.

7 Conclusion

We have laid the foundations of SMT-based verification for artifact systems, focusing on safety
problems and relying on array-based systems as underlying formal model. We have exploited
the model-theoretic machinery of model completion to overcome the main technical difficulty
arising from this approach, i.e., showing how to reconstruct quantifier elimination in the rich
setting of artifact systems. On top of this framework, we have identified three classes of
systems for which safety is decidable, which impose different combinations of restrictions on
the form of actions and the shape of DB constraints. The presented techniques have been
implemented on top of the well-established mcmt model checker, making our approach fully
operational.

14http://users.mat.unimi.it/users/ghilardi/mcmt/, subdirectory /examples/dbdriven of the distribution. The
user manual contains a new section (pages 36–39) on how to encode RASs in MCMT specifications.
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Table 1: Experimental results. The input system size is reflected by columns #AC, #AV,
#T, indicating, resp., the number of artifact components, artifact variables, and transitions.
Exp. #AC #AV #T Prop. Res. Time

(sec)

E1 9 18 15 E1P1 SAFE 0.06
E1P2 UNSAFE 0.36
E1P3 UNSAFE 0.50
E1P4 UNSAFE 0.35

E2 6 13 28 E2P1 SAFE 0.72
E2P2 UNSAFE 0.88
E2P3 UNSAFE 1.01
E2P4 UNSAFE 0.83

E3 4 14 13 E3P1 SAFE 0.05
E3P2 UNSAFE 0.06

Exp. #AC #AV #T Prop. Res. Time
(sec)

E4 9 11 21 E4P1 SAFE 0.12
E4P2 UNSAFE 0.13

E5 6 17 34 E5P1 SAFE 4.11
E5P2 UNSAFE 0.17

E6 2 7 15 E6P1 SAFE 0.04
E6P2 UNSAFE 0.08

E7 2 28 38 E7P1 SAFE 1.00
E7P2 UNSAFE 0.20

E8 3 20 19 E8P1 SAFE 0.70
E8P2 UNSAFE 0.15

We consider the present work as the starting point for a full line of research dedicated to
SMT-based techniques for the effective verification of data-aware processes, addressing richer
forms of verification beyond safety (such as liveness, fairness, or full LTL-FO) and richer
classes of artifact systems, (e.g., with concrete data types and arithmetics), while identifying
novel decidable classes (e.g., by restricting the structure of the DB and of transition and
state formulae). Implementation-wise, we want to build on the reported encouraging results
and benchmark our approach using the Verifas system as a baseline, while incorporating
the plethora of optimizations available in SMT-based model checking. Finally, we plan to
tackle more conventional process modeling notations, in particular data-aware extensions of
the de-facto standard BPMN.
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A EXAMPLES
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id : UserId userName : String User

id : EmpId empName : String Employee

id : CompInId who : EmpId what : JobCatId CompetentIn

id : JobCatId jobCatDescr : String JobCategory

Figure 2: On the left: characteristic graph of the human resources DB signature from Ex-
ample 3.1, augmented with the signature of the artifact extension for the job hiring process;
value sorts are shown in pink, basic id sorts in blue, and artifact id sorts in yellow. On the
right: relational view of the DB signature and the corresponding artifact relations; each cell
denotes an attribute with its type, underlined attributes denote primary keys, and directed
edges capture foreign keys.

A Examples

In this section, we present two full examples of RAS for which our backward reachability
technique terminates. In particular, they are meant to highlight the expressiveness of our
approach, even in presence of the restrictions imposed by Theorems 5.2 and 5.3 towards
decidability of reachability. When writing transition formulae in the examples, we make the
following assumption: when an artifact variable or component is not mentioned at all in a
transition, it is meant that is updated identically; if it is mentioned, the relevant update
function in the transition will specify how it is updated.15

A.1 Job Hiring Process

We present a RAS Shr capturing a job hiring process where multiple job categories may be
turned into actual job offers, each one receiving many applications from registered users. Such
applications are then evaluated, finally deciding which are accepted and which are rejected.
The example is inspired by the job hiring process presented in [42] to show the intrinsic
difficulties of capturing real-life processes with many-to-many interacting business entities
using conventional process modeling notations (such as BPMN). Note that this example is
also demonstrating the co-evolution of multiple instances of two different artifacts (namely,
job offer and application).

As for the read-only DB, Shr works over the DB schema of Example 3.1, extended with a
further value sort Score used to score the applications sent for job offerings. Score contains 102
different values, intuitively corresponding to the integer numbers from −1 to 100 (included),
where −1 denotes that the application is considered to be not eligible, while a score between
0 and 100 indicates the actual score assigned after evaluating the application. For the sake
of readability, we make use of the usual integer comparison predicates to compare variables
of type Score. This is simply syntactic sugar and does not require the introduction of rigid
predicates in our framework. In fact, given two variables x and y of type Score, x < y is a

15Notice that non-deterministic updates can be formalized using the existential quantified variables in the
transition.
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shortcut for the finitary disjunction testing that x is one of the scores that are “less than” y
(similarly for the other comparison predicates).

As for the working memory, Shr consists of three artifacts: a single-instance job hiring
artifact tracking the three main phases of the overall process, and two multi-instance artifacts
accounting for the evolution of job offers, and that of corresponding user applications. The job
hiring artifact simply requires a dedicated pState variable to store the current process state.
The job offer and user application multi-instance artifacts are instead modeled by enriching
the DB signature Σhr of the read-only database of human resources. In particular, an artifact
extension is added containing two artifact sorts joIndex and appIndex used to respectively
index (i.e., “internally” identify) job offers and applications. The management of job offers
and applications is then modeled by a full-fledged artifact setting that adopts:

• artifact components with domains joIndex and appIndex to capture the artifact relations
storing multiple instances of job offers and applications;

• individual variables used as temporary memory to manipulate the artifact relations.
The actual components of such an artifact setting will be introduced when needed.

We now describe how the process works, step by step. Initially, hiring is disabled, which
is captured by initially setting the pState variable to undef. A transition of the process from
disabled to enabled may occur provided that the read-only HR DB contains at least one
registered user (who, in turn, may decide to apply for job offers created during this phase).
Technically, we introduce a dedicated artifact variable uId initialized to undef, and used to load
the identifier of such a registered user, if (s)he exists. The enablement task is then captured
by the following transition formula:

∃y : UserId

pState = undef ∧ y 6= undef
aState = undef ∧ aState ′ = undef
∧pState ′ = enabled ∧ uId ′ = y


We now focus on the creation of a job offer. When the overall hiring process is enabled,

some job categories present in the read-only DB may be published into a corresponding job
offer, consequently becoming ready to receive applications. This is done in two steps. In the
first step, we transfer the id of the job category to be published to the artifact variable jId ,
and the string representing the publishing date to the artifact variable pubDate. Thus, jId is
filled with the identifier of a job category picked from JobCatId (modeling a nondeterministic
choice of category), while pubDate is filled with a String (modeling a user input where one of
the infinitely many strings is injected into pubDate).

In addition, the transition interacts with a further artifact variable pubState capturing the
publishing state of offers, and consequently used to synchronize the two steps for publishing
a job offer. In particular, this first step can be executed only if pubState is not in state
publishing, and has the effect of setting it to such a value, thus preventing the first step to
be executed twice in a row (which would actually overwrite what has been stored in jId and
pubDate). Technically, we have:

∃j:JobCatId, d:String

pState = enabled ∧ pubState 6= publishing ∧ j 6= undef
∧ pState ′ = enabled ∧ pubState ′ = publishing ∧ jId ′ = j ∧ pubDate ′ = d
aState = undef ∧ aState ′ = undef


The second step consists in transferring the content of these three variables into corresponding
artifact components that keep track of all active job offers, at the same time resetting the
content of the artifact variables to undef. This is done by introducing three function variables
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with domain joIndex, respectively keeping track of the category, publishing date, and state of
job offers:

joCat : joIndex −→ JobCatId
joPDate : joIndex −→ String
joState : joIndex −→ String

With these artifact components at hand, the second step is then realized as follows:

∃i:joIndex

pState = enabled ∧ pubState = publishing ∧ joPDate[i] = undef ∧ joCat [i] = undef ∧ joState[i] = undef
∧ aState ′ = undef ∧ pState ′ = enabled ∧ pubState ′ = published

∧ joCat ′ = λj.

if j = i then jId
else if joCat [j] = jId then undef

else joCat [j]

 ∧ joPDate ′ = λj.

if j = i then pubDate
else if joCat [j] = jId then undef

else joPDate[j]


∧ joState ′ = λj.

if j = i then open
else if joCat [j] = jId then undef

else joState[j]


∧ uId ′ = undef ∧ eId ′ = undef ∧ jId ′ = undef ∧ pubDate ′ = undef ∧ cId ′ = undef


The “if-then-else” pattern is used to create an entry for the job offer artifact relation containing
the information stored into the artifact variables populated in the first step, at the same time
making sure that only one entry exists for a given job category. This is done by picking a
job offer index i that is not already pointing to an actual job offer, i.e., such that the i-th
element of joCat is undef. Then, the transition updates the whole content of the three artifact
components joCat , joPDate, and joState as follows:
• The i-th entry of such variables is respectively assigned to the job category stored in

JobCatId, the string stored in pubDate, and the constant open (signifying that this entry is
ready to receive applications).
• All other entries are kept unaltered, with the exception of a possibly existing entry j with
j 6= i that points to the same job category contained in JobCatId. If such an entry j exists,
its content is reset, by assigning to the j-th component of all three artifact components the
value undef. Obviously, other strategies to resolve this possible conflict can be seamlessly
captured in our framework.

A similar conflict resolution strategy will be used in the other transitions of this example.
We now focus on the evolution of applications to job offers. Each application consists of

a job category, the identifier of the applicant user, the identifier of an employee from human
resources who is responsible for the application, the score assigned to the application, and the
application final result (indicating whether the application is among the winners or the losers
for the job offer). These five information types are encapsulated into five dedicated function
variables with domain appIndex, collectively realizing the application artifact relation:

appJobCat : appIndex −→ JobCatId
applicant : appIndex −→ UserId
appResp : appIndex −→ EmpId
appScore : appIndex −→ Score
appResult : appIndex −→ String

With these function variables at hand, we discuss the insertion of an application into
the system for an open job offer. This is again managed in multiple steps, first loading the
necessary information into dedicated artifact variables, and finally transferring them into the
function variables that collectively realize the application artifact relation. To synchronize
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these multiple steps and define which step is applicable in a given state, we make use of a
string artifact variable called aState. The first step to insert an application is executed when
aState is undef, and has the effect of loading into jId the identifier of a job category that has
a corresponding open job offer, at the same time putting aState in state joSelected.

∃i:joIndexpState = enabled ∧ aState = undef ∧ pubState 6= publishing ∧ joCat [i] 6= undef ∧ joState[i] = open
∧ pState ′ = enabled ∧ aState ′ = joSelected ∧ jId ′ = joCat [i] ∧ joCat ′ = joCat ∧ pubState ′ = undef
∧ uId ′ = undef ∧ eId ′ = undef ∧ jId ′ = undef ∧ pubDate ′ = undef ∧ cId ′ = undef


The last row of the transition resets the content of all artifact variables, cleaning the working
memory for the forthcoming steps (avoiding that stale values are present there). This is also
useful from the technical point of view, as it guarantees that the transition is strongly local
(cf. Section 5, and the discussion in Appendix F.1).

The second step has a twofold purpose: picking the identifier of the user who wants to
submit an application for the selected job offer, and assigning to its application an employee
of human resources who is competent in the category of the job offer. This also results in an
update of variable aState:

∃u:UserId, e:EmpId, c:CompInIdpState = enabled ∧ aState = joSelected ∧ pubState 6= publishing ∧ who(c) = e
∧what(c) = jId ∧ jId 6= undef ∧ u 6= undef ∧ c 6= undef ∧ pState ′ = enabled
∧aState ′ = received ∧ jId ′ = jId ∧ uId ′ = u ∧ eId ′ = e ∧ cId ′ = c


The last step transfers the application data into the application artifact relation, making

sure that no two applications exist for the same user and the same job category. The transfer
is done by assigning the artifact variables to corresponding components of the application
artifact relation, at the same resetting all application-related artifact variables to undef (in-
cluding aState, so that new applications can be inserted). For the insertion, a “free” index
(i.e., an index pointing to an undefined applicant, with an undefined job category and an
undefined responsible) is picked. The newly inserted application gets a default score of -1
(thus initializing it to “not eligible”), while the final result is undef:

∃i:appIndex

pState = enabled ∧ aState = received ∧ pubState 6= publishing
∧ appJobCat [i] = undef ∧ applicant [i] = undef ∧ appResp[i] = undef
∧pState ′ = enabled ∧ aState ′ = undef ∧ pubState ′ = undef

∧ appJobCat ′ = λj.

if j = i then jId
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else appJobCat [j]


∧ applicant ′ = λj.

if j = i then uId
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else applicant [j]


∧ appResp′ = λj.

if j = i then eId
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else appResp[j]


∧ appScore ′ = λj.

if j = i then -1
else if (applicant [j] = uId ∧ appResp[j] = eId) then undef

else appScore[j]


∧ appResult ′ = λj.

(
if j = i ∨ (applicant [j] = uId ∧ appResp[j] = eId) then undef
else appResult [j]

)
∧ uId ′ = undef ∧ eId ′ = undef ∧ jId ′ = undef ∧ pubDate ′ = undef ∧ cId ′ = undef


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Each single application that is currently considered as not eligible can be made eligible by
carrying out an evaluation that assigns a proper score to it. This is managed by the following
transition:

∃i:appIndex, s:Score
(

pState = enabled ∧ applicant [i] 6= undef ∧ pubState 6= publishing
appScore[i] = -1 ∧ s ≥ 0 ∧ pState ′ = enabled ∧ appScore ′[i] = s

)
Evaluations are only possible as long as the process is in the enabled state. The process moves
from enabled to final once the deadline for receiving applications to job offers is actually
reached. This event is captured with pure nondeterminism, and has the additional bulk effect
of turning all open job offers to closed :

pState = enabled ∧ pState ′ = final ∧ pubState 6= publishing ∧ pubState ′ = undef
aState = undef ∧ aState ′ = undef ∧ pubDate ′ = undef

∧joState ′ = λj.

(
if joState[j] = open then closed
else joState[j]

)
Finally, we consider the determination of winners and losers, which is carried out when

the overall hiring process moves from final to notified. This is captured by the following bulk
transition, which declares all applications with a score above 80 as winning, and all the others
as losing:

pState = final ∧ pState ′ = notified ∧ pubDate ′ = undef ∧ pubState 6= publishing
aState = undef ∧ aState ′ = undef ∧ pubState ′ = undef

∧appResult ′ = λj.

(
if appScore[j] > 80 then winner
else loser

)
We close the example with the following key observation. All transitions of the hiring

process are, in their current form, strongly local, with the exception of those operating over
artifact relations in a way that ensures no repeated entries are inserted. Such transitions can
be turned into strongly local ones if repetitions in the artifact relations are allowed. That is,
multiple identical job offers and applications can be inserted in the corresponding relations,
using different indexes. This is the strategy adopted in Example 4.1 in the main text of the
paper. This approach realizes a sort of multiset semantics for artifact relations. The impact
of this variant to verification of safety properties is discussed in Appendix F.2.

A.2 Flight Management Process

In this section we consider a simple RAS that falls in the scope of the decidability result
described in Section 5. Specifically, this example has a tree-like artifact setting (see Figure 3),
thus assuring that, when solving the safety problem for it, the backward search algorithm is
guaranteed to terminate. Note, however, that the termination result adopted here is the one
of Theorem 5.3 due to the non-locality of certain transitions, as explained in detail below.

The flight management process represents a simplified version of a flight management sys-
tem adopted by an airline. To prepare a flight, the company picks a corresponding destination
(that meets the aviation safety compliance indications) and consequently reports on a number
of passengers that are going to attend the flight. Then, an airport dispatcher may pick a
manned flight and put it in the airports flight plan. In case the flight destination becomes
unsafe (e.g., it was stroke by a hurricane or the hosting airport had been seized by terrorists),
the dispatcher uses the system to inform the airline about this condition. In turn, the airline
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Figure 3: A characteristic graph of the flight management process, where blue and yellow
boxes respectively represent basic and artifact sorts.

notifies all the passengers of the affected destination about the contingency, and temporary
cancels their flights.

To formalize these different aspects, we make use of a DB signature Σfm that consists
of: (i) two id sorts, used to identify flights and cities; (ii) one function symbol destination :
FlightId −→ CityId mapping flight identifiers to their corresponding destinations (i.e., city
identifiers). Note that, in a classical relational model (cf. Section 3.1), our signature would
contain two relations: one binary RFlightId that defines flights and their destinations, and
another unary RCityId identifying cities, that are referenced by RFlightId using destination.

We assume that the read-only flight management database contains data about at least one
flight and one city. To start the process, one needs at least one city to meet the aviation safety
compliances. It is assumed that, initially, all the cities are unsafe. An airport dispatcher, at
once, may change the safety status only of one city.

We model this action by performing two consequent actions. First, we select the city
identifier and store it in the designated artifact variable safeCitytId :

∃c:CityId
(
c 6= undef ∧ safeCitytId = undef ∧ safeCitytId ′ = c

)
Then, we place the extracted city identifier into a unary artifact relation safeCity :
CityIndex −→ CityId, that is used to represent safe cities and where CityIndex is its artifact
sort.

∃i:CityIndex
safeCity [i] = undef ∧ safeCitytId 6= undef ∧ safeCitytId ′ = undef

∧ safeCity ′ = λj.

if j = i then safeCitytId
else if safeCity [j] = safeCitytId then undef

else safeCity [j]




Note that two previous transitions can be rewritten as a unique one, hence showing a more
compact way of specifying RAS transitions. This, in turn, can augment the performance of the
verifier while working with large-scale cases. The unified transition actually looks as follows:

∃c:CityId,∃i:CityIndex
c 6= undef ∧ safeCity [i] = undef

∧ safeCity ′ = λj.

if j = i then c
else if safeCity [j] = c then undef

else safeCity [j]




Then, to register passengers with booked tickets on a flight, the airline needs to make sure
that a corresponding flight destination is actually safe. To perform the passenger registration,
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the airline selects a flight identifier that is assigned to the route and uses it to populate entries
in an unary artifact relation regdPassenger : PassengerIndex −→ FlightId. Note that there
may be more than one passenger taking the flight, and therefore, more than one entry in
regdPassenger with the same flight identifier.

∃i:CityIndex, f :FlightId, p:PassengerIndexf 6= undef ∧ destination(f) = safeCity [i] ∧ regdPassenger [p] = undef

∧ regdPassenger ′ = λj.

(
if j = p then f
else regdPassenger [j]

) 
We also assume that the airline owns aircraft of one type that can contain no more than

k passengers. In case there were more than k passengers registered on the flight, the airline
receives a notification about its overbooking and temporary suspends all passenger regis-
trations associated to this flight. This is modelled by checking whether there are at least
k + 1 entries in regdPassenger . If so, the flight identifier is added to a unary artifact rela-
tion overbooked : FligthIndex −→ FlightId and all the passenger registrations in regdPassenger
that reference this flight identifier are nullified by updating unboundedly many entries in the
corresponding artifact relation:16

∃p1:PassengerIndex, . . . pk+1:PassengerIndex,m:FligthIndex
∧

i,i′∈{1,...,k+1},i6=i′ (pi 6= pi′ ∧ regdPassenger [pi] 6= undef ∧ regdPassenger [pi] = regdPassenger [pi′ ])

∧ overbooked [m] = undef

∧ regdPassenger ′ = λj.

(
if regdPassenger [j] = regdPassenger [p1] then undef
else regdPassenger [j]

)
∧ overbooked ′[m] = regdPassenger [p1]


Notice that this transition is not local, since its guard contains literals of the form
regdPassenger [pi] = regdPassenger [pi′ ] (with pi 6= pi′), which involve more than one element
of one artifact sort.

In case of any contingency, the airport dispatcher may change the city status from safe
to unsafe. To do it, we first select one of the safe cities, make it unsafe (i.e., remove it from
safeCity relation) and store its identifier in the artifact variable unsafeCityId :

∃i:CityIndex
(
unsafeCityId = undef ∧ safeCity [i] 6= undef ∧ unsafeCityId ′ = safeCity [i] ∧ safeCity ′[i] = undef

)
Then, we use the remembered city identifier to cancel all the passenger registrations for

flights that use this city as their destination:17unsafeCityId 6= undef ∧ unsafeCityId ′ = undef

∧ regdPassenger ′ = λj.

(
if destination(regdPassenger [j]) = unsafeCityId then undef
else regdPassenger [j]

)
Also in this case, we can shrink the transitions into a single transition:

∃i:CityIndex
(
safeCity [i] 6= undef ∧ regdPassenger ′ = λj.

(
if destination(regdPassenger [j]) = safeCity [i] then undef
else regdPassenger [j]

))
However, as in the previous case, the transition turns out to be not local. Specifically, it

is due to the literal destination(regdPassenger [j]) = safeCity [i] that involves more than one
element with different artifact sorts.

16For simplicity of presentation, we simply remove such data from the artifact relation. In a real setting,
this information would actually be transferred to a dedicated, historical table, so as to reconstruct the status
of past, overbooked flights.

17Similarly to the previous case, the corresponding transition performs the intended action by updating
unboundedly many entries in the artifact relation.
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B Proofs and Complements for Section 3

We fix a signature Σ and a universal theory T as in Definition 3.1.
Observe that if Σ is acyclic, there are only finitely many terms involving a single variable

x: in fact, there are as many terms as paths in G(Σ) starting from the sort of x. If kΣ is the
maximum number of terms involving a single variable, then (since all function symbols are
unary) there are at most knΣ terms involving n variables.

Proposition 3.1. T has the finite model property in case Σ is acyclic.

Proof. If T := ∅, then congruence closure ensures that the finite model property holds and
decides constraint satisfiability in time O(n log n) [13].

Otherwise, we reduce the argument to the Herbrand Theorem. Indeed, suppose to have a
set Φ of universal formulae. Herbrand Theorem states that Φ has a model iff the set of ground
instances of Φ has a model. These ground instances are finitely many by acyclicity, so we can
reduce to the case where T is empty.

Remark B.1. If T is finite, Proposition 3.1 ensures decidability of constraint satisfiability. In
order to obtain a decision procedure, it is sufficient to instantiate the axioms of T and the
axioms of equality (reflexivity, transitivity, symmetry, congruence) and to use a SAT-solver
to decide constraint satisfiability. Alternatively, one can decide constraint satisfiability via
congruence closure [13] and avoid instantiating the equality axioms.

Remark B.2. Acyclity is a strong condition, often too strong. However, some condition must
be imposed (otherwise we have undecidability, and then failure of finite model property, by
reduction to word problem for finite presentations of monoids). In fact, the empty theory
and the theory axiomatized by axiom 1 both have the finite model property even without
acyciclity assumptions.

Remark B.3. It is evident from the above proof that Proposition 3.1 still holds whenever n-ary
relation symbols are added to the signature, so it applies also to the extended DB-theories
considered in Definition 3.2.

We recall some basic definitions and notions from logic and model theory. We focus on
the definitions of diagram, embedding, substructure and amalgamation.

We adopt the usual first-order syntactic notions of signature, term, atom, (ground) formula,
sentence, and so on.

Let Σ be a first-order signature. The signature obtained from Σ by adding to it a set
a of new constants (i.e., 0-ary function symbols) is denoted by Σa. We indicate by |A| the
support of a Σ-structure A: this is the disjoint union of the sets SA, varying S among the
sort symbols of A. Analogously, given a Σ-structure A, the signature Σ can be expanded to
a new signature Σ|A| := Σ ∪ {ā | a ∈ |A|} by adding a set of new constants ā (the name for
a), one for each element a in A, with the convention that two distinct elements are denoted
by different "name" constants. A can be expanded to a Σ|A|-structure A′ := (A, a)a∈|A| just
interpreting the additional costants over the corresponding elements. From now on, when the
meaning is clear from the context, we will freely use the notation A and A′ interchangeably:
in particular, given a Σ-structureM and a Σ-formula φ(x) with free variables that are all in
x, we will write, by abuse of notation, A |= φ(a) instead of A′ |= φ(ā).
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A Σ-homomorphism (or, simply, a homomorphism) between two Σ-structures M and N
is any mapping µ : |M| −→ |N | among the support sets |M| of M and |N | of N satisfying
the condition

M |= ϕ ⇒ N |= ϕ (10)

for all Σ|M|-atoms ϕ (hereM is regarded as a Σ|M|-structure, by interpreting each additional
constant a ∈ |M| into itself and N is regarded as a Σ|M|-structure by interpreting each
additional constant a ∈ |M| into µ(a)). In case condition (10) holds for all Σ|M|-literals, the
homomorphism µ is said to be an embedding and if it holds for all first order formulae, the
embedding µ is said to be elementary. Notice the following facts:

(a) since we have equality in the signature, an embedding is an injective function;

(b) an embedding µ :M−→ N must be an algebraic homomorphism, that is for every n-ary
function symbol f and for everym1, ...,mn in |M|, we must have fN (µ(m1), ..., µ(mn)) =
µ(fM(m1, ...,mn));

(c) for an n-ary predicate symbol P we must have (m1, ...,mn) ∈ PM iff (µ(m1), ..., µ(mn)) ∈
PN .

It is easily seen that an embedding µ : M −→ N can be equivalently defined as a map
µ : |M| −→ |N | satisfying the conditions (a)-(b)-(c) above. If µ :M−→ N is an embedding
which is just the identity inclusion |M| ⊆ |N |, we say thatM is a substructure of N or that
N is an extension ofM. A Σ-structureM is said to be generated by a set X included in its
support |M| iff there are no proper substructures ofM including X.

The notion of substructure can be equivalently defined as follows: given a Σ-structure N
and a Σ-structureM such that |M| ⊆ |N |, we say thatM is a Σ-substructure of N if:

• for every function symbol f inf Σ, the interpretation of f inM (denoted using fM) is
the restriction of the interpretation of f in N to |M| (i.e. fM(m) = fN (m) for every m
in |M|); this fact implies that a substructureM must be a subset of N which is closed
under the application of fN .

• for every relation symbol P in Σ and every tuple (m1, ...,mn) ∈ |M|n, (m1, ...,mn) ∈ PM
iff (m1, ...,mn) ∈ PN , which means that the relation PM is the restriction of PN to the
support ofM.

We recall that a substructure preserves and reflects validity of ground formulae, in the
following sense: given a Σ-substructure A1 of a Σ-structure A2, a ground Σ|A1|-sentence θ is
true in A1 iff θ is true in A2.

Let A be a Σ-structure. The diagram of A, denoted by ∆Σ(A), is defined as the set of
ground Σ|A|-literals (i.e. atomic formulae and negations of atomic formulae) that are true in
A. For the sake of simplicity, once again by abuse of notation, we will freely say that ∆Σ(A)
is the set of Σ|A|-literals which are true in A.

An easy but nevertheless important basic result, called Robinson Diagram Lemma [21],
says that, given any Σ-structure B, the embeddings µ : A −→ B are in bijective correspondence
with expansions of B to Σ|A|-structures which are models of ∆Σ(A). The expansions and the
embeddings are related in the obvious way: ā is interpreted as µ(a).

Amalgamation is a classical algebraic concept. We give the formal definition of this notion.
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Definition B.1 (Amalgamation). A theory T has the amalgamation property if for every
couple of embeddings µ1 : M0 −→ M1, µ2 : M0 −→ M2 among models of T , there exists
a model M of T endowed with embeddings ν1 : M1 −→ M and ν2 : M2 −→ M such that
ν1 ◦ µ1 = ν2 ◦ µ2

M

M1 M2

M0

ν2ν1

µ1 µ2

The triple (M, µ1, µ2) (or, by abuse, M itself) is said to be a T -amalgama of M1,M2

overM0

The following Lemma gives a useful folklore technique for finding model completions:

Lemma B.1. Suppose that for every primitive Σ-formula ∃xφ(x, y) it is possible to find a
quantifier-free formula ψ(y) such that

(i) T |= ∀x ∀y (φ(x, y)→ ψ(y));

(ii) for every model M of T , for every tuple of elements a from the support of M such that
M |= ψ(a) it is possible to find another model N of T such thatM embeds into N and
N |= ∃xφ(x, a).

Then T has a model completion T ∗ axiomatized by the infinitely many sentences 18

∀y (ψ(y)→ ∃xφ(x, y)) . (11)

Proof. From (i) and (11) we clearly get that T ? admits quantifier elimination: in fact, in order
to prove that a theory enjoys quantifier elimination, it is sufficient to teliminate quantifiers
from primitive formulae (then the quantifier elimination for all formulae can be easily shown
by an induction over their complexity). This is exactly what is guaranteed by (i) and (11).

LetM be a model of T . We show (by using a chain argument) that there exists a model
M′ of T ? such thatM embeds intoM′. For every primitive formula ∃xφ(x, y), consider the
set {(a,∃xφ(x, a))} such thatM |= ψ(a) (where ψ is related to φ as in (i)-(ii)). By Zermelo’s
Theorem, the set {(a, ∃e φ(e, a))} can be well-ordered: let {(ai, ∃e φi(e, ai))}i∈I be such a
well-ordered set (where I is an ordinal). By transfinite induction on this well-order, we define
M0 :=M and, for each i ∈ I,Mi as the extension of

⋃
j<iMj such thatMi |= ∃e φi(e, y),

which exists for (ii) since
⋃
j<iMj |= ψi(a) (remember that validity of ground formulae is

preserved passing through substructures and superstructures, andM0 |= ψi(a)).
Now we take the chain unionM1 :=

⋃
i∈IMi: since T is universal,M1 is again a model

of T , and it is possible to construct an analogous chainM2 as done above, starting fromM1

instead of M. Clearly, we get M0 := M ⊆ M1 ⊆ M2 by construction. At this point, we
iterate the same argument countably many times, so as to define a new chain of models of T :

M0 :=M⊆M1 ⊆ ... ⊆Mn ⊆ ...
18Notice that our T is assumed to be universal according to Definition 3.1, whereas T ∗ turns out to be

universal-existential.
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Defining M′ :=
⋃
nMn, we trivially get that M′ is a model of T such that M ⊆ M′

and satisfies all the sentences of type (11). The last fact can be shown using the following
finiteness argument.

Fix φ, ψ as in (11). For every tuple a′ ∈ M′ such that M′ |= ψ(a′), by definition of M′
there exists a natural number k such that a′ ∈ Mk: since ψ(a′) is a ground formula, we get
that also Mk |= ψ(a′). Therefore, we consider the step k of the countable chain: there, we
have that the pair (a′, ψ(a′)) appears in the enumeration given by the well-ordered set of pairs
{(ai,∃e φi(e, ai))}i∈I (for some ordinal I) such thatMk |= ψi(a). Hence, by construction and
since ψ(a′) is a ground formula, we have that there exists a j ∈ I such thatMk

j |= ∃e φ(e, a′).
In conclusion, since the existential formulae are preserved passing to extensions, we obtain
M′ |= ∃e φ(e, a′), as wanted.

Proposition 3.2. T has a model completion in case it is axiomatized by universal one-variable
formulae and Σ is acyclic.

Proof. We freely take inspiration from an analogous result in [44]. We preliminarly show that
T is amalgamable. Then, for a suitable choice of ψ suggested by the acyclicity assumption, the
amalgamation property will be used to prove the validy of the condition (ii) of Lemma B.1: this
fact (together with condition (i)) yields that T has a model completion which is axiomatized
by the infinitely many sentences (11).

LetM1 andM2 two models of T with a submodelM0 of T in common (we suppose for
simplicity that |M1| ∩ |M2| = |M0|). We define a T -amalgam M of M1,M2 over M0 as
follows (we use in an essential way the fact that Σ contains only unary function symbols).19

Let the support ofM be the set-theoretic union of the supports ofM1 andM2, i.e. |M| :=
|M1| ∪ |M2|. M has a natural Σ-structure inherited by the Σ-structures M1 and M2: for
every function symbol f in Σ, we define, for each mi ∈ |Mi|(i = 1, 2), fM(mi) := fM1(mi),
i.e. the interpretation of f inM is the restriction of the interpretation of f inMi for every
element mi ∈ |Mi|. This is well-defined since, for every a ∈ |M1| ∩ |M2| = |M0|, we have
that fM(a) := fM1(a) = fM0(a) = fM2(a). It is clear that M1 and M2 are substructures
ofM, and their inclusions agree onM0.

We show that the Σ-structureM, as defined above, is a model of T . By hypothesis, T is
axiomatized by universal one-variable formulae: so, we can consider T as a theory formed by
axioms φ which are universal closures of clauses with just one variable, i.e. φ := ∀x(A1(x) ∧
...∧An(x)→ B1(x)∨ ...∨Bm(x)), where Aj and Bk (j = 1, ..., n and k = 1, ...,m) are atoms.

We show thatM satisfies all such formulae φ. In order to do that, suppose that, for every
a ∈ |M|,M |= Aj(a) for all j = 1, ..., n. If a ∈ |Mi|, thenM |= Aj(a) impliesMi |= Aj(a),
since Aj(a) is a ground formula. Since Mi is model of T and so Mi |= φ, we get that
Mi |= Bk(a) for some k = 1, ...,m, which means that M |= Bk(a), since Bk(a) is a ground
formula. Thus,M |= φ for every axiom φ of T , i.e. M |= T and, hence,M is a T -amalgam
ofM1,M2 overM0, as wanted

Now, given a primitive formula ∃xφ(x, y), we find a suitable ψ such that the hypothesis
of Lemma B.1 holds. We define ψ(y) as the conjunction of the set of all quantifier-free χ(y)-
formulae such that φ(x, y)→ χ(y) is a logical consequences of T (they are finitely many - up
to T -equivalence - because Σ is acyclic). By definition, clearly we have that (i) of Lemma B.1
holds.

19 Adding n-ary relations symbols would not compromize the argument either.
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We show that also condition (ii) is satisfied. LetM be a model of T such thatM |= ψ(a)
for some tuple of elements a from the support ofM. Then, consider the Σ-substructureM[a]
ofM generated by the elements a: this substructure is finite (since Σ is acyclic), it is a model
of T and we trivially have that M[a] |= ψ(a), since ψ(a) is a ground formula. In order to
prove that there exists an extension N ′ of M[a] such that N |= ∃xφ(x, a), it is sufficient to
prove (by the Robinson Diagram Lemma) that the Σ|M[a]|∪{e}-theory ∆(M[a])∪{φ(e, a)} is T -
consistent. For reduction to absurdity, suppose that the last theory is T -inconsistent. Then,
there are finitely many literals l1(a), ..., lm(a) from ∆(M[a]) (remember that ∆(M[a]) is a
finite set of literals sinceM[a] is a finite structure) such that φ(e, a) |=T ¬(l1(a)∧ ...∧ lm(a)).
Therefore, defining A(a) := l1(a) ∧ ... ∧ lm(a), we get that φ(e, a) |=T ¬A(a), which implies
that ¬A(a) is one of the χ(y)-formulae appearing in ψ(a). SinceM[a] |= ψ(a), we also have
thatM[a] |= ¬A(a), which is a contraddiction: in fact, by definition of diagram,M[a] |= A(a)
must hold. Hence, there exists an extension N ′ ofM[a] such that N ′ |= ∃xφ(x, a). Now, by
amalgamation property, there exists a T -amalgam N ofM and N ′ overM[a]: clearly, N is
an extension of M and, since N ′ ↪→ N and N ′ |= ∃xφ(x, a), also N |= ∃xφ(x, a) holds, as
required.

Remark B.4. The proof of Proposition 3.2 gives an algorithm for quantifier elimination in
the model completion. The algorithm works as follows (see the formula (11)): to eliminate
the quantifier x from ∃xφ(x, y) take the conjunction of the clauses χ(y) implied by φ(x, y).
This algorithm is far from optimal from two points of view. First, contrary to what happens
in linear arithmetics, the quantifier elimination needed to prove Proposition 3.2 has a much
better behaviour (from the complexity point of view) if obtained via a suitable version of the
Knuth-Bendix procedure [9]. Since these aspects concerning quantifier elimination are rather
delicate, we address them in a dedicated paper [18] (our mcmt implementation, however,
already partially takes into account such future development).

Secondly, the algorithm presented in Appendix B uses the acyclicity assumption, whereas
such assumption is in general not needed for Proposition 3.2 to hold: for instance, when T := ∅
or when T contains only Axiom (1), a model completion can be proved to exist, even if Σ is
not acyclic, by using the Knuth-Bendix version of the quantifier elimination algorithm.

C Proofs of Theorem 5.1

In this section we present Theorems C.2 and C.3 that constitute the proof of Theorem 5.1
from Section 5.

First, we specify the definition of RAS in the particular case of SAS. Given a DB schema
〈Σ, T 〉 and a tuple x = x1, . . . , xn of variables, we consider the following classes of Σ-formulae:
– a state formula is a quantifier-free Σ-formula φ(x);
– an initial formula is a conjunction of equalities of the form

∧n
i=1 xi = ci, where each ci is a

constant;20

– a transition formula τ̂ is an existential formula

∃y
(
G(x, y) ∧

∧n
i=1 x

′
i = Fi(x, y)

)
(12)

where x′ are renamed copies of x, G is quantifier-free and F1, . . . , Fn are case-defined func-
tions. We call G the guard and Fi the updates of Formula (12).

20Typically, ci is an undef constant mentioned above.
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In view of Definition 4.1, we have:

Definition C.1. A Simple Artifact System (SAS) has the form

S = 〈Σ, T, x, ι(x), τ(x, x′)〉

where: (i) 〈Σ, T 〉 is a (read-only) DB schema, (ii) x = x1, . . . , xn are variables (called artifact
variables), (iii) ι is an initial formula, and (iv) τ is a disjunction of transition formulae.

Theorem C.2. Let 〈Σ, T 〉 be a DB schema. Then, for any a SAS S with 〈Σ, T 〉 as its DB
schema, backward search algorithm is effective and partially correct for solving safety problems
for S. If, in addition, Σ is acyclic, backward search terminates and decides safety problems
for S.

Proof. In the case of SAS, formula (7) has the following form

ι(x0) ∧ τ(x0, x1) ∧ · · · ∧ τ(xk−1, xk) ∧ υ(xk) . (13)

By definition, S is unsafe iff for some n, the formula (13) is satisfiable in a DB-instance of
〈Σ, T 〉. Thanks to Assumption 3.4, T has the finite model property and consequently, as (13)
is an existential Σ-formula, S is unsafe iff for some n, formula (13) is satisfiable in a model of
T ; furthermore, again by Assumption 3.4, S is unsafe iff for some n, formula (13) is satisfiable
in a model of T ∗. Thus, we shall concentrate on satisfiability in models of T ∗ in order to prove
the Theorem.

Let us call Bn (resp. φn) the status of the variable B (resp. φ) after n executions in line
4 (resp. line 6) of Algorithm 1. Notice that we have T ∗ |= φj+1 ↔ Pre(τ, φj) for all j and
that

T |= Bn ↔
∨

0≤j<n
φj (14)

is an invariant of the algorithm.
Since we are considering satisfiability in models of T ∗, we can apply quantifier elimination

and so the satisfiability of (13) is equivalent to the satisfiability of ι∧ φn: this is a quantifier-
free formula (because in line 6 of Algorithm 1), whose satisfiability (wrt T or equivalently wrt
T ∗)21 is decidable by Assumption 1, so if Algorithm 1 terminates with an unsafe outcome,
then S is really unsafe.

Now consider the satisfiability test in line 2. This is again a satisfiability test for
a quantifier-free formula, thus it is decidable. In case of a safe outcome, we have that
T |= φn → Bn; this means that, if we could continue executing the loop of Algorithm 1,
we would nevertheless get T ∗ |= Bm ↔ Bn for all m ≥ n.22 This would entail that ι ∧ φm is
always unsatisfiable (because of (14) and because ι∧φj was unsatisfiable for all j < n), which
is the same (as remarked above) as saying that all formulae (13) are unsatisfiable. Thus S is
safe.

21T -satisfiability and T ∗-satisfiability are equivalent, by the definition of T ∗, as far as existential (in partic-
ular, quantifier-free) formulae are concerned.

22 In more detail: recall the invariant (14) and that T ∗ |= φj+1 ↔ Pre(τ, φj) holds for all j. Thus,
from T |= φn → Bn, we get T |= φn+1 → Pre(τ,Bn); since Pre commutes with disjunctions, we have
T ∗ |= Pre(τ, Bn) ↔

∨
1≤j≤n φj . Now (using T |= φn → Bn again), we get T ∗ |= φn+1 → Bn, that is

T ∗ |= Bn+1 ↔ Bn. Since then T ∗ |= φn+1 → Bn+1, we can repeat the argument for all m ≥ n.
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In case Σ is acyclic, there are only finitely many quantifier-free formulae (in which the
finite set of variables x occur), so it is evident that the algorithm must terminate: because
of (14), the unsatisfiability test of Line 2 must eventually succeed, if the unsatisfiability test
of Line 3 never does so.

For complexity questions, we have the following result:

Theorem C.3. Let Σ be an acyclic DB signature and 〈Σ, T 〉 a DB schema built on top of it.
Then, for every SAS S = 〈Σ, T, x, ι, τ〉, deciding safety problems for S is in PSPACE in the
size of x, of ι and of τ .

Proof. We need to modify Algorithm 1 (we make it nondeterministic and use Savitch’s The-
orem saying that PSPACE = NPSPACE).

Since Σ is acyclic, there are only finitely many terms involving a single variable, let this
number be kΣ (we consider T,Σ and hence kΣ constant for our problems). Then, since all
function symbols are unary, it is clear that we have at most 2O(n2) conjunctions of sets of literals
involving at most n variables and that if the system is unsafe, unsafety can be detected with
a run whose length is at most 2O(n2). Thus we introduce a counter to be incremented during
the main loop (lines 2-6) of Algorithm 1. The fixpoint test in line 2 is removed and loop is
executed only until the maximum length of an unsafe run is not exceeded (notice that an
exponential counter requires polynomial space).

Inside the loop, line 4 is removed (we do not need anymore the variable B) and line 6 is
modified as follows. We replace line 6 of the algorithm by

6′. φ←− α(x);

where α is a non-deterministically chosen conjunction of literals implying QE(T ∗, φ). Notice
that to check the latter, there is no need to compute QE(T ∗, φ): recalling the proof of Propo-
sition 3.2 and Remark B.4 it is sufficient to check that T |= α → C holds for every clause
C(x) such that T |= φ→ C.

The algorithm is now in PSPACE, because all the satisfiability tests we need are, as a
consequence of the proof of Proposition 3.1, in NP: all such tests are reducible to T -satisfiability
tests for quantifier-free Σ-formulae involving the variables x and the additional (skolemized)
quantified variables occurring in the transitions 23. In fact, all these satisfiability tests are
applied to formulae whose length is polynomial in the size of x, of ι and of τ .

The proof of Theorem 5.1 shows that, whenever Σ is not acyclic, backward search is still
a semi-decision procedure: if the system is unsafe, backward search always terminates and
discovers it; if the system is safe, the procedure can diverge (but it is still correct).

D Proof of Theorem 4.2

The technique used for proving Theorem 4.2 is similar to that used in [20] (but here we have
to face some additional complications, due to the fact that our quantifier elimination is not
directly available, it is only indirectly available via model completions).

23 For the test in line 3, we just need replace in φ the x by their values given by ι, conjoin the result with
all the ground instances of the axioms of T and finally decide satisfiability with congruence closure algorithm
of a polynomial size ground conjunction of literals.
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When introducing our transition formulae in (6) we made use of definable extensions and
also of some function definitions via λ-abstraction. We already observed that such uses are due
to notational convenience and do not really go beyond first-order logic. We are clarifying one
more point now, before going into formal proofs. The lambda-abstraction definitions in (6)
will make the proof of Lemma D.1 below smooth. Recall that an expression like

b = λy.F (y, z)

can be seen as a mere abbreviation of ∀y b(y) = F (y, z). However, the use of such abbreviation
makes clear that e.g. a formula like

∃b (b = λy.F (y, z) ∧ φ(z, b))

is equivalent to
φ(z, λy.F (y, z)/b) . (15)

Since our φ(z, b) is in fact a first-order formula, our b can occur in it only in terms like b(t),
so that in (15) all occurrences of λ can be eliminated by the so-called β-conversion: replace
λyF (y, z)(t) by F (t, z). Thus, in the end, either we use definable extensions or definitions via
lambda abstractions, the formulae we manipulate can always be converted into plain first-order
Σ- or Σext -formulae.

Let us call extended state formulae the formulae of the kind ∃e φ(e, x, a), where φ is
quantifier-free and the e are individual variables of both artifact and basic sorts.

Lemma D.1. The preimage of an extended state formula is logically equivalent to an extended
state formula.

Proof. We manipulate the formula

∃x′ ∃a′ (τ(x, a, x′, a′) ∧ ∃e φ(e, x′, a′)) (16)

up to logical equivalence, where τ is given by24

∃e0

(
γ(e0, x, a) ∧ x′ = F (e0, x, a) ∧ a′ = λy.G(y, e0, x, a)

)
(17)

(here we used plain equality for conjunctions of equalities, e.g. x′ = F (e0, x, a) stands for∧
i x
′
i = Fi(e, x, a)). Repeated substitutions show that (16) is equivalent to

∃e ∃e0

(
γ(e0, x, a) ∧ φ(e, F (e0, x, a)/x′, λy.G(y, e0, x, a)/a′)

)
(18)

which is an extended state formula.

Lemma D.2. For every extended state formula there is a state formula equivalent to it in all
Σext -models of T ∗.

24Actually, τ is a disjunction of such formulae, but it easily seen that disjunction can be accommodated by
moving existential quantifiers back-and-forth through them.
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Proof. Let ∃e ∃y φ(e, y, x, a), be an extended state formula, where φ is quantifier-free, the e
are variables whose sort is an artifact sort and the y are variables whose sort is a basic sort.

Now observe that, according to our definitions, the artifact components have an artifact
sort as source sort and a basic sort as target sort; since equality is the only predicate, the
literals in φ can be divided into equalities/inequalities between variables from e and literals
where the e can only occur as arguments of an artifact component. Let a[e] be the tuple of
the terms among the terms of the kind aj [es] which are well-typed; using disjunctive normal
forms, our extended state formula can be written as a disjunction of formulae of the kind

∃e∃y (φ1(e) ∧ φ2(y, x, a[e]/z)) (19)

where φ1 is a conjunction of equalities/inequalities, φ2(y, x, z) is a quantifier-free Σ-formula
and φ2(y, x, a[e]/z) is obtained from φ2 by replacing the variables z by the terms a[e]. Moving
inside the existential quantifiers y, we can rewrite (19) to

∃e (φ1(e) ∧ ∃y φ2(y, x, a[e]/z)) (20)

Since T ∗ has quantifier elimination, we have that there is ψ(x, z) which is equivalent to
∃y φ2(y, x, z)) in all models of T ∗; thus in all Σext -models of T ∗, the formula (20) is equivalent
to

∃e (φ1(e) ∧ ψ(x, a[e]/z))

which is a state formula.

We underline that Lemmas D.1 and D.2 both give an explicit effective procedure for
computing equivalent (extended) state formulae. Used one after the other, such procedures
extends the procedure QE(T ∗, φ) in line 6 of Algorithm 1 to (non simple) artifact systems.
Thanks to such procedure, the only formulae we need to test for satisfiability in lines 2 and 3
of the backward reachability algorithm are the ∃∀-formulae introduced below.

Let us call ∃∀-formulae the formulae of the kind

∃e ∀i φ(e, i, x, a) (21)

where the variables e, i are variables whose sort is an artifact sort and φ is quantifier-free. The
crucial point for the following lemma to hold is that the universally quantified variables in
∃∀-formulae are all of artifact sorts:

Lemma D.3. The satisfiability of a ∃∀-formula in a Σext -model of T is decidable; moreover, a
∃∀-formula is satisfiable in a Σext -model of T iff it is satisfiable in a DB-instance of 〈Σext , T 〉
iff it is satisfiable in a Σext -model of T ∗.

Proof. First of all, notice that a ∃∀-formula (21) is equivalent to a disjunction of formulae of
the kind

∃e (Diff(e) ∧ ∀i φ(e, i, x, a)) (22)

where Diff(e) says that any two variables of the same sort from the e are distinct (to this aim,
it is sufficient to guess a partition and to keep, via a substitution, only one element for each
equivalence class).25 So we can freely assume that ∃∀-formulae are all of the kind (22).

25In the MCMT implementation, state formulae are always maintained so that all existential variables
occurring in them are differentiated, so that there is no need of this expensive computation step.
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Now, by the way Σext is built, the only atoms occurring in φ whose arguments involve
terms of artifact sorts are of the kind es = ej , so all such atoms can be replaced either by >
or by ⊥ (depending on whether we have s = j or not). So we can assume that there are no
such atoms in φ and as a result, the variables e, i can only occur as arguments of the a.

Let us consider now the set of all (sort-matching) substitutions σ mapping the i to the
e. The formula (22) is satisfiable (respectively: in a Σext -model of T , in a DB-instance of
〈Σext , T 〉, in a Σext -model of T ∗) iff so it is the formula

∃e (Diff(e) ∧
∧
σ

φ(e, iσ, x, a)) (23)

(here iσ means the componentwise application of σ to the i): this is because, if (23) is satisfi-
able inM, then we can take asM′ the same Σext -structure asM, but with the interpretation
of the artifact sorts restricted only to the elements named by the e and get in this way a Σext -
structureM′ satisfying (22) (notice thatM′ is still a DB-instance of 〈Σext , T 〉 or a Σext -model
of T ∗, if so wasM). Thus, we can freely concentrate on the satisfiability problem of formulae
of the kind (23) only.

Let now a[e] be the tuple of the terms among the terms of the kind aj [es] which are well-
typed. Since in (23) the e can only occur as arguments of the artifact components, as observed
above, the formula (23) is in fact of the kind

∃e (Diff(e) ∧ ψ(x, a[e]/z)) (24)

where ψ(x, z) is a quantifier-free Σ-formula and ψ(x, a[e]/z) is obtained from ψ by replacing
the variables z by the terms a[e] (notice that the z are of basic sorts because the target sorts
of the artifact components are basic sorts).

It is now evident that (24) is satisfiable (respectively: in a Σext -model of T , in a DB-
instance of 〈Σext , T 〉, in a Σext -model of T ∗) iff the formula

ψ(x, z) (25)

is satisfiable (respectively: in a Σ-model of T , in a DB-instance of 〈Σ, T 〉, in a Σ-model of
T ∗). In fact, if we are given a Σ-structure M and an assignment satisfying (25), we can
easily expand M to a Σext -structure by taking the e’s themselves as the elements of the
interpretation of the artifact sorts; in the so-expanded Σext -structure, we can interpret the
artifact components a by taking the a[e] to be the elements assigned to the z in the satisfying
assignment for (25).

Thanks to Assumption 3.4, the satisfiability of (25) in a Σ-model of T , in a DB-instance
of 〈Σ, T 〉, or in a Σ-model of T ∗ are all equivalent and decidable.

The instantiation algorithm of Lemma D.3 can be used to discharge the satisfiability tests
in lines 2 and 3 of Algorithm 1 because the conjunction of a state formula and of the negation
of a state formula is a ∃∀-formula (notice that ι is itself the negation of a state formula,
according to the definition of an initial formula in RAS.

Theorem 4.2 The backward search algorithm (cf. Algorithm 1), applied to artifact systems,
is effective and partially correct.
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Proof. Recall that S is unsafe iff there is no DB-instance M of 〈Σext , T 〉, no k ≥ 0 and no
assignment inM to the variables x0, a0 . . . , xk, ak such that the formula (7)

ι(x0, a0) ∧ τ(x0, a0, x1, a1) ∧ · · · ∧ τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)

is true inM. It is sufficient to show that this is equivalent to saying that there is no Σext -model
M of T ∗, no k ≥ 0 and no assignment inM to the variables x0, a0 . . . , xk, ak such that (7) is
true inM (once this is shown, the proof goes in the same way as the proof of Theorem 5.1).

Now, the formula (7) is satisfiable in a Σext -structure M under a suitable assignment iff
the formula

ι(x0, a0) ∧ ∃a1∃x1(τ(x0, a0, x1, a1) ∧ · · ·
· · · ∧ ∃ak∃xk(τ(xk−1, ak−1, xk, ak) ∧ υ(xk, ak)) · · · )

is satisfiable inM under a suitable assignment; by Lemma D.1, the latter is equivalent to a
formula of the kind

ι(x, a) ∧ ∃e ∃z φ(e, z, x, a) (26)

where ∃e∃z φ(e, z, x, a) is an extended state formula (thus φ is quantifier-free, the e are vari-
ables of artifact sorts and the z are variables of basic sorts - we renamed x0, a0 as x, a). However
the satisfiability of (26) is the same as the satisfiability of ∃e (ι(x, a)∧φ(e, z, x, a)); the latter,
in view of the definition of initial formula in RAS, is a ∃∀-formula and so Lemma D.3 applies
and shows that its satisfiability in a DB-instance of 〈Σext , T 〉 is the same as its satisfiability
in a Σext -model of T ∗.

We remark that all the results in this Section (in particular, Theorem 4.2) hold also in
case the read-only database is modeled via an extended DB-theory (see Definition 3.2) satisfying
Assumption 3.4.

E Proof of Termination Results: local updates and tree-like
settings

We begin by recalling some basic facts about well-quasi-orders. Recall that a well-quasi-order
(wqo) is a set W endowed with a reflexive-transitive relation ≤ having the following property:
for every infinite succession

w0, w1, . . . , wi, . . .

of elements from W there are i, j such that i < j and wi ≤ wj .
The fundamental result about wqo’s is the following, which is a consequence of the well-

known Kruskal’s Tree Theorem [35]:

Theorem E.1. If (W,≤) is a wqo, then so is the partial order of the finite lists over W ,
ordered by componentwise subword comparison (i.e. w ≤ w′ iff there is a subword w0 of w′

of the same length as w, such that the i-th entry of w is less or equal to—in the sense of
(W,≤)—the i-th entry of w0, for all i = 0, . . . |w|).

Various wqo’s can be recognized by applying the above theorem; in particular, the theorem
implies that the cartesian product of wqo’s is a wqo. As an application, notice that N is a
wqo, hence the following corollary (known as Dikson Lemma) follows:
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Corollary E.2. The cartesian product of k-copies of N (and also of N ∪ {∞}), with compo-
nentwise ordering, is a wqo.

Let us now turn to the terminology introduced in Section5 and in particular to the numbers
k1(M), . . . , kN (M) ∈ N∪{∞} counting the numbers of elements generating (as singletons) the
cyclic substructures C1, . . . , CN , respectively (we assume the acyclicity of Σ and consequently
also of Σ̃).

Lemma E.1. LetM,N be Σ̃-structures. If the inequalities

k1(M) ≤ k1(N ), . . . , kN (M) ≤ kN (N )

hold, then all local formulae true inM are also true in N .

Proof. Notice that local formulae (viewed in Σ̃) are sentences, because they do not have
free variable occurrences - the a, x are now constant function symbols and individual con-
stants, respectively. The proof of the lemma is fairly obvious: notice that, once we as-
signed some α(ei) in M to the variable ei, the truth of a formula like φ(ei, x, a) under
such an assignment depends only on the Σ̃-substructure generated by α(ei), because φ is
quantifier-free and ei is the only Σ̃-variable occurring in it. In fact, if a local state for-
mula ∃e1 · · · ∃ek

(
δ(e1, . . . , ek) ∧

∧k
i=1 φi(ei, x, a)

)
is true in M, then there exist elements

ē1, · · · , ēk (in the interpretation of some artifact sorts), each of which makes φi true. Hence,
φi is also true in the corresponding cyclic structure generated by ēi. Since k1(M) ≤
k1(N ), . . . , kN (M) ≤ kN (N ) hold, then also in N there are at least as many elements in
the interpretation of artifact sorts as there are in M that validate all the φi . Thus, we get
that ∃e1 · · · ∃ek

(
δ(e1, . . . , ek) ∧

∧k
i=1 φi(ei, x, a)

)
is true also in N , as wanted.

Theorem 5.2 If Σ is acyclic, the backward search algorithm (cf. Algorithm 1) terminates
when applied to a local safety formula in a RAS, whose transition formula is a disjunction of
local transition formulae.

Proof. Suppose the algorithm does not terminate. Then the fixpoint test of Line 2 fails
infinitely often. Recalling that the T -equivalence of Bn and of

∨
0≤j<n φj is an invariant of

the algorithm (here φn, Bn are the status of the variables φ,B after n execution of the main
loop), this means that there are models

M0,M1, . . . ,Mi, . . .

such that for all i, we have thatMi |= φi andMi 6|= φj (all j < i). But the φi are all local
formulae, so considering the tuple of cardinals k1(Mi), . . . , kN (Mi) and Lemma E.1, we get
a contradiction, in view of Dikson Lemma. This is because, by Dikson Lemma, (N ∪ {∞})N
is a wqo, so there exist i, j such that j < i and k1(Mj) ≤ k1(Mi), . . . , kN (Mj) ≤ kN (Mi).
Using Lemma E.1, we get that φj , which is local and true inMj , is also true inMi, which is
a contradiction.

Proving termination for RAS with a tree-like artifact setting is more complex, but follows
a similar schema as in the case of local transition formulae.
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If (W,≤) is a partial order, we consider the set M(W ) of finite multisets of W as a partial
order in the following way:26 say that M ≤ N holds iff there is an injection p : M −→ N
such that m ≤ p(m) holds for all m ∈M (in other words, p associates with every occurrence
of m an occurrence p(m) of an element of N so that different occurrences are associated to
different occurrences).

Corollary E.3. If (W,≤) is a wqo, then so is (M(W ),≤) as defined above.

Proof. This is due to the fact that one can convert a multiset M to a list L(M) so that if
L(M) ≤ L(N) holds, then alsoM ≤ N holds (such a conversion L can be obtained by ordering
the occurrences of elements in M in any arbitrarily chosen way).

We assume that the graph G(Σ̃) associated to Σ̃ is a tree (the generalization to the case
where such a graph is a forest is trivial). This means in particular that each sort is the domain
of at most one function symbol and that there just one sort which is not the domain of any
function symbol (let us call it the root sort of Σ̃ and let us denote it with Sr).

By induction on the height27 of a sort S in the above graph, we define a wqo w(S) (in
the definition we use the fact the cartesian product of wqo’s is a wqo and Corollary E.3). Let
S1, . . . , Sn be the sons of S in the tree; put

w(S) := M(w(S1))× · · · ×M(w(Sn)) (27)

(thus, if S is a leaf, w(S) is the trivial one-element wqo - its only element is the empty tuple).
Let now M be a finite Σ̃-structure; we indicate with SM the interpretation inM of the

sort S (it is a finite set). For a ∈ SM, we define the multiset MM(a) ∈ w(S), again by
induction on the height of S. Suppose that S1, . . . , Sn are the sons of S and that the arc from
Si to S is labeled by the function symbol fi; then we put

MM(a) := 〈{MM(b1) | b1 ∈ SM1 and fM1 (b1) = a}, . . .
. . . , {MM(bn) | bn ∈ SMn and fMn (bn) = a}〉

where fMi (i = 1, . . . , n) is the interpretation of the symbol fi inM.
Moreover, for every sort S, we let

MM(S) := {MM(a) | a ∈ SM} . (28)

Finally, we define
M(M) := MM(Sr) . (29)

For termination, the relevant lemma is the following:

Lemma E.2. Suppose that Σ̃ is tree-like and does not contain constant symbols; given two
finite Σ̃-structuresM and N , we have that if M(M) ≤M(N ), thenM embeds into N .

Proof. Again, we make an induction on the height of S, proving the claim for the subsignature
of Σ̃ having S as a root (let us call this the S-subsignature).

26This is not the canonical ordering used for multisets, as introduced eg in [9].
27This is defined as the length of the longest path from S to a leaf.
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LetM be a model over the S-subsignature. For every a ∈ SM, and for every fi : Si −→ S,
if we restrict M to the elements in the fi-fibers of a, we get a model Mfi,a for the Si-
subsignature (an element c ∈ S̃M is in the fi-fiber of a if, taking the term t corresponding to
the composition of the functions symbols going from S̃ to Si, we have that fMi (tM(c)) = a).
In addition, if MM(a) = (M1, . . . ,Mn), then Mi = M(Mfi,a) by definition. Finally, observe
that the restriction of M to the Si-subsignature is the disjoint union of the fi-fibers models
Mfi,a, varying a ∈ SM.

Suppose now thatM,N are models over the S-subsignature such that M(M) ≤ M(N );
this means that we can find an injective map µ mapping SM into SN so that MM(a) ≤
MN (µ(a)). If MM(a) = (M1, . . . ,Mn) and MN (µ(a)) = (N1, . . . , Nn), we then have that
Mi ≤ Ni for every i = 1, . . . , n. Considering that, as noticed above, Mi = Mfi,a and
Ni = Nfi,µ(a), by induction hypothesis, we have embeddings νi,a for the fi-fibers models of
a and µ(a) (for every a ∈ SM and i = 1, . . . , n). Glueing these embeddings to the disjoint
union (varying i, a) and adding them µ as S-component, we get the desired embedding ofM
into N .

Proposition E.1. If Σ̃ is tree-like and does not contain constant symbols, then the finite
Σ̃-structures are a wqo with respect to the embeddability quasi-order.

Proof. An immediate consequence of the previous lemma.

Theorem 5.3 Backward search (cf. Algorithm 1) terminates when applied to a safety problem
in a RAS with a tree-like artifact setting.

Proof. For simplicity, we give the argument for the case where we do not have constants and
artifact variables (but see the footnote below for the general case). Similarly to the proof of
Theorem 5.2, suppose the algorithm does not terminate. Then the fixpoint test of Line 2 fails
infinitely often. Recalling that the T -equivalence of Bn and of

∨
0≤j<n φj is an invariant of

the algorithm (here φn, Bn are the status of the variables φ,B after n execution of the main
loop), this means that there are models

M0,M1, . . . ,Mi, . . .

such that for all i, we have that Mi |= φi and Mi 6|= φj (all j < i). The models can be
taken to be all finite, by Lemma D.3. But the φi are all existential sentences in Σ̃, so this is
incompatible to the fact that, by Proposition E.1, there are j < i withMj embeddable into
Mi.28

28 The following observation shows how to extend the proof to the case where we have constants and artifact
variables. Recall that in Σ̃ the artifact variables are seen as constants, so we need to consider only the case of
constants. Let Σ̃+ be Σ̃ where each constant symbol c of sort S is replaced by a new sort Sc and a new function
symbol fc : Sc −→ S. Now every modelM of Σ̃ can be transformed into a modelM+ of Σ̃+ by interpreting
Sc as a singleton set {∗} and fc as the map sending ∗ to cM. This transformation has the following property:
Σ̃-embeddings ofM into N are in bijective correspondence with Σ̃+-embeddings ofM+ into N+. Since Σ̃+

is still tree-like and does not have constant symbols, this shows that Theorem 5.3 holds for Σ̃ too.
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F Complements for Section 5

Fix an acyclic signature Σ and an artifact setting (x, a) over it. In this section we analyze
in our setting the transition formulae studied in [37]29 (deletion, insertion and propagation
updates). In addition, we discuss some modifications of the previous transitions and introduce
new kinds of updates (like bulk updates). We prove that all these transitions are strongly local
transitions.

F.1 Deletion Updates

We want to remove a tuple t := (t1, ..., tm) from an m-ary artifact relation R and assign the
values t1, ..., tm to some of the artifact variables (let x := x1, x2, where x1 := (xi1 , ..., xim)
are the variables where we want to transfer the tuple t). This operation has to be applied
only if the current artifact variables x satisfy the pre-condition π(x1, x2) and the updated
artifact variables x′ := x′1, x

′
2 satisfy the post-condition ψ(x′1, x

′
2) (π and ψ are quantifier-free

formulae). The variables x2 are not propagated, i.e. they are non deterministically reassigned.
Let r := r1, ..., rm be the artifact components of R. Such an update can be formalized in a
symbolic way as follows:

∃d∃e

 π(x1, x2) ∧ ψ(x′1, x
′
2) ∧ r1[e] 6= undef ∧ ...

∧ rn[e] 6= undef ∧ (x′1 := r[e] ∧ x′2 := d ∧ s′ := s ∧
∧ r′ := λj.(if j = e then undef else r[j]))

 (30)

where s are the artifact components of the artifact relations different from R. Notice that the
d are non deterministically produced values for the updated x′2. In the terminology of [37],
notice that no artifact variable is propagated in a deletion update.

Notice that in place of the condition r1[e] 6= undef ∧ ... ∧ rn[e] 6= undef one can consider
the modified deletion update that is fired only if some (and not all) artifact components are
not undef, or even the case when the transition is fired if at least one artifact component is
not undef: the latter case can be expressed using a disjunction of transitions τi that, instead
of r1[e] 6= undef ∧ ... ∧ rn[e] 6= undef, involve only the literal ri[e] 6= undef (for i = 1, ..., n).
These modified deletion updates can be proved to be strongly local transitions by using trivial
adaptations of the arguments shown below.

The formula (30) is not in the format (6) but can be easily converted into it as follows:

∃d∃e

 π(x1, x2) ∧ ψ(r[e], d) ∧ r1[e] 6= undef ∧ ...
∧ rn[e] 6= undef ∧ (x′1 := r[e] ∧ x′2 := d ∧ s′ := s ∧

∧ r′ := λj.(if j = e then undef else r[j]))

 (31)

We prove that the preimage along (31) of a strongly local formula is strongly local. Con-
sider a strongly local formula

K := ψ′(x) ∧ ∃e

(
Diff(e) ∧

∧
er∈e

φer(r[er]) ∧Θ

)

where Θ is a formula involving the artifact components s (which are not updated) such that
no er occurs in it.

29For simplicity, since we are not considering hierarchical aspects, we assume that there is no input variable
in the sense of [37]
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Remark F.1. Notice that equality is the only predicate, so a quantifier-free formula φ(e, a)
involving a single variable e must be obtained from atoms of the kind b[e] = b′[e] (for b, b′ ∈ a)
by applying the Boolean connectives only: this is why we usually display such a formula as
φ(a[e]). In addition, since the source sorts of the different artifact relations are different,
we cannot employ the same variable as argument of artifact components of different artifact
relations: in other words, we cannot employ the same variable e in terms like ri[e] and sj [e],
in case ri and sj are components of two different artifact relation R and S (because e must
have either type R or type S). Thus, the quantifier-free subformula φi(a[ei]) in a local formula
involving only the variable ei must be of the kind φi(r[ei]), for some artifact relation R (here
r are the artifact components of R). These observations will be often used in the sequel.

We compute the preimage Pre(31,K)

∃d∃e, e∃x′1, x′2 ∃r′
 π(x1, x2) ∧ ψ(r[e], d) ∧ ψ′(x′1, x

′
2) ∧

∧ x′1 := r[e] ∧ x′2 := d ∧ Diff(e) ∧
∧
er∈e φer(r′[er]) ∧

∧ r′ := λj.(if j = e then undef else r[j]) ∧Θ


which can be rewritten as a disjunction of the following formulae:

• ∃d ∃e, e
(
Diff(e, e) ∧ π(x1, x2) ∧ ψ(r[e], d) ∧
∧ ψ′(r[e], d) ∧

∧
er∈e φer(r[er]) ∧ Θ

)
covering the case where e is different from all ej ∈ e

• ∃d ∃e
(
Diff(e) ∧ π(x1, x2) ∧ ψ(r[ej ], d) ∧ ψ′(r[ej ], d) ∧
∧
∧
er∈e,er 6=ej φer(r[er]) ∧ φej (undef) ∧Θ

)
covering the case where e = ej , for some ej ∈ e

We can now move the existential quantifier ∃d in front of ψ ∧ ψ′. We eliminate
the quantifiers (applying the quantifier elimination procedure for T ?) from the subformula
∃d (ψ(r[e], d) ∧ ψ′(r[e], d)) (or ∃d (ψ(r[e], d) ∧ ψ′(r[e], d)), resp.) obtaining a formula of the
kind θ(r[e]) (or θ(r[ej ]).

The final result is the disjunction of the formulae

• ∃e, e
(
Diff(e, e) ∧ π(x1, x2) ∧ θ(r[e]) ∧

∧
er∈e φer(r[er]) ∧ Θ

)
• ∃e

(
Diff(e) ∧ π(x1, x2) ∧ θ(r[ej ]) ∧
∧
∧
er∈e,er 6=ej φer(r[er]) ∧ φej (undef) ∧ Θ

)
which is a strongly local formula.

Analogous arguments show that:

(i) transitions like Formula (30), where the literals r1[e] 6= undef ∧ ... ∧ rn[e] 6= undef are
replaced with a generic constraint χ(r[e]);

(ii) transitions that remove a tuple from an artifact relation (without transferring its values
to the corresponding artifact variables);

(iii) transitions that copy the the content of a tuple contained in an artifact relation to
some artifact variables, non-deterministically reassigning the values of the other artifact
variables;
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(iv) transitions that combine (i) and (iii)

are also strongly local.

Remark F.2. Notice that deletion updates with the propagation of some artifact variables
x1 (which are not allowed in [37] and in [27]) are not strongly local, since the preimage of
a strongly local formula can produce formulae of the form ψ(r[e], x1). This preimage is still
local: however, the preimage of a local state formula through a deletion update can generate
formulae of the form ψ(r[e], r[e′]), with e 6= e′, destroying locality. Hence, the safety problem
for a RAS equipped containing deletion updates with propagation in its transitions, is not
guaranteed to terminate.

F.2 Insertion Updates

We want to insert a tuple of values t := (t1, ..., tm) from the artifact variables x1 :=
(xi1 , ..., xim) (let x := x1, x2 as above) into an m-ary artifact relation R. This operation has
to be applied only if the current artifact variables x satisfy the pre-condition π(x1, x2) and
the updated artifact variables x′ := x′1, x

′
2 satisfy the post-condition ψ(x′1, x

′
2). The variables

x are all not propagated, i.e. they are non deterministically reassigned. Let r := r1, ..., rm be
the artifact components of R. Such an update can be formalized in a symbolic way as follows:

∃d1, d2 ∃e

 π(x1, x2) ∧ ψ(x′1, x
′
2) ∧ r[e] = undef

∧ (x′1 := d1 ∧ x′2 := d2 ∧ s′ := s ∧
∧ r′ := λj.(if j = e then x1 else r[j]))

 (32)

where s are the artifact components of the artifact relations different from R. Notice that
d1, d2 are non deterministically produced values for the updated x′1, x

′
2. In the terminology

of [37], notice that no artifact variable is propagated in a insertion update. Notice that the
following arguments remain the same even if r[e] = undef is replaced with a conjunction of
some literals of the form rj [e] = undef, for some j = 1, ...,m, or even if r[e] = undef is replaced
with a generic constraint χ(r[e]).

In this transition, the insertion of the same content in correspondence to different entries
is allowed. If we want to avoid this kind of multiple insertions, the update r′ must be modified
as follows:

r′ := λj.

(
if j = e then x1 else

(if r[j] = x1 then undef else r[j])

)
The formula (32) is not in the format (6) but can be easily converted into it as follows:

∃d1, d2 ∃e

 π(x1, x2) ∧ ψ(d1, d2) ∧ r[e] = undef
∧ (x′1 := d1 ∧ x′2 := d2 ∧ s′ := s ∧
∧ r′ := λj.(if j = e then x1 else r[j]))

 (33)

We prove that the preimage along (33) of a strongly local formula is strongly local. Con-
sider a strongly local formula

K := ψ′(x) ∧ ∃e

(
Diff(e) ∧

∧
er∈e

φer(r[er]) ∧Θ

)
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where Θ is a formula involving the artifact relations s (which are not updated) such that no
er occurs in it.

We compute the preimage Pre(33,K)

∃d1, d2 ∃e, e∃x′1, x′2 ∃r′
 π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(x′1, x

′
2) ∧ r[e] = undef

∧ x′1 := d1 ∧ x′2 := d2 ∧ Diff(e) ∧
∧
er∈e φer(r′[er]) ∧

∧ r′ := λj.(if j = e1 then x1 else r[j]) ∧Θ


which can be rewritten as a disjunction of the following formulae:

• ∃d1, d2 ∃e, e
(
Diff(e, e) ∧ π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(d1, d2)
∧ r[e] = undef ∧

∧
er∈e φer(r[er]) ∧ Θ

)
covering the case where e is different from all ej ∈ e

• ∃d1, d2 ∃e
(
Diff(e) ∧ π(x1, x2) ∧ ψ(d1, d2) ∧ ψ′(d1, d2) ∧
∧ r[e] = undef ∧

∧
er∈e,er 6=ej φer(r[er]) ∧ φej (x1) ∧ Θ

)
covering the case where e = ej , for some ej ∈ e.

We can move the existential quantifiers ∃d1, d2 in front of ψ ∧ ψ′. We eliminate
the quantifiers (applying the quantifier elimination procedure for T ?) from the subformula
∃d1d2 (ψ(d1, d2) ∧ ψ′(d1, d2)) obtaining a ground formula θ.

The final result is a disjunction of formulae fo the kind

• ∃e, e
(
Diff(e, e) ∧ π(x1, x2) ∧ r[e] = undef ∧ θ ∧

∧
er∈e φer(r[er]) ∧ Θ

)
• ∃e

(
Diff(e) ∧ π(x1, x2) ∧ φej (x1) ∧ r[e] = undef ∧ θ ∧

∧
er∈e,er 6=ej φer(r[er]) ∧ Θ

)
which is a strongly local formula.

Analogous arguments show that transitions that insert a tuple of values t := (t1, ..., tm)
(where the values tj are taken from the content of the artifact variables x1 := (xi1 , ..., xim)
or are constants) into an m-ary artifact relation R are also strongly local; in addition, it is
easy to see that “propagation” (in the sense of the following subsection) of variables from x is
allowed in order to preserve strong locality of all those transitions. Notice that the transition
introduced in Example 4.1:

∃i:appIndex

pState = enabled ∧ aState = received
∧ applicant [i] = undef
∧ pState ′ = enabled ∧ aState ′ = undef ∧ cId ′ = undef
∧ appJobCat ′ = λj. (if j = i then jId else appJobCat [j])
∧ applicant ′ = λj. (if j = i then uId else applicant [j])
∧ appResp′ = λj. (if j = i then eId else appResp[j])
∧ appScore ′ = λj. (if j = i then -1 else appScore[j])
∧ appResult ′ = λj. (if j = i then undef else appResult [j])
∧ jId ′ = undef ∧ uId ′ = undef ∧ eId ′ = undef


presents the described format.

We close this section with an important remark. In Appendix A.1, we have seen that
to forbid the insertion at different indexes of multiple identical tuples in an artifact relation,
transitions break the strong locality requirement. A way to restore locality is to simply admit
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such repeated insertions. Notably, if one focuses on the fragment of strongly local RAS that
coincides with the model in [27, 37], it can be shown, exactly reconstructing the same line of
reasoning from [27], that verification problems (in the restricted common fragment) for artifact
systems working over sets (i.e., insertions are performed over working memory without possible
repetitions) and those working over multisets, are indeed equivalent.

F.3 Propagation Updates

We want to propagate a tuple t := (t1, ..., tm) of values contained in the artifact variables
x1 := (xi1 , ..., xim) (let x := x1, x2) to the corresponding updated artifact variables x′1. This
operation has to be applied only if the current artifact variables x satisfy the pre-condition
π(x1, x2) and the updated artifact variables x′ := x′1, x

′
2 satisfy the post-condition ψ(x′1, x

′
2).

Notice that in this transition no update of artifact component is involved.

Such an update can be formalized in a symbolic way as follows:

∃d
(
π(x1, x2) ∧ ψ(x′1, x

′
2) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s)

)
(34)

where s stands for all the artifact components. Notice that the d are non deterministically
produced values for the updated x′2. In the terminology of [37], notice that the artifact
variables x1 are propagated.

The formula (32) is not in the format (6) but can be easily converted into it as follows:

∃d
(
π(x1, x2) ∧ ψ(x1, d) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s)

)
(35)

We prove that the preimage along (35) of a strongly local formula is strongly local. Con-
sider a strongly local formula

K := ψ′(x) ∧ ∃e (Diff(e) ∧Θ)

where Θ is a formula involving the all artifact relations s (which are not modified in a propa-
gation update), such that K fits the format of (9).

We compute the preimage Pre(34,K)

∃d∃x′1, x′2
(
π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, x

′
2) ∧

∧ x′1 := x1 ∧ x′2 := d ∧ Diff(e) ∧ Θ

)
which can be rewritten as follows:

∃d∃e
(
Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧

∧ ψ′(x1, d) ∧ Θ

)
We can move the existential quantifier ∃d in front of ψ ∧ ψ′. We eliminate the quantifiers

(applying the quantifier elimination procedure for T ?) from the subformula ∃d(ψ(x1, d) ∧
ψ′(x1d)) obtaining a formula of the kind θ(x1).

The final result is

∃e
(
Diff(e) ∧ π(x1, x2) ∧ θ(x1) ∧ Θ

)
which is a strongly local formula.

Consider a transition that inserts constants or a non-deterministically generated new value
d′ (or a tuple of new values d′) into an artifact component ri (or more than one) of an m-ary
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artifact relation r, propagating all the other components and the artifact variables x1 (with
x := x1, x2). Formally, this transition can be written in the following way:

∃d, d′ ∃e
(

π(x1, x2) ∧ ψ(x′1, x
′
2) ∧ χ1(d′) ∧ χ2(r[e]) ∧

∧ (x′1 := x1 ∧ x′2 := d ∧ r′i = λj.(if j = e then d′ else r[j]) ∧ s′ := s)

)
(36)

where s stands for all the artifact components different from ri, and χ1 and χ2 are quantifier-
free formulae. Notice that the d are non deterministically produced values for the updated
x′2. In the terminology of [37], notice that the artifact variables x1 are propagated.

The formula (36) is not in the format (6) but can be easily converted into it as follows:

∃d, d′ ∃e
(

π(x1, x2) ∧ ψ(x1, d) ∧ χ1(d′) ∧ χ2(r[e]) ∧
∧ (x′1 := x1 ∧ x′2 := d ∧ r′i = λj.(if j = e then d′ else r[j]) ∧ s′ := s)

)
(37)

Since d′ does not occur in literals involving artifact variables, arguments analogous to the
previous ones show that this transition is strongly local.

Notice that the transition (described in Example 4.1):

∃i:joIndex, s:Score
pState = enabled
∧ applicant [i] 6= undef ∧ appScore[i] = -1
aState = undef ∧ aState ′ = undef ∧ s ≥ 0
∧ pState ′ = enabled ∧ appScore ′[i] = s


that assesses a Score to an applicant presents the structure of (37), so it is a strongly local
transition. The same conclusion holds for the transition:

∃u:UserId, j:JobCatId, e:EmpId, c:CompInId
pState = enabled ∧ aState = undef
∧ u 6= undef ∧ j 6= undef ∧ e 6= undef ∧ c 6= undef
∧ who(c) = e ∧ what(c) = j
∧ pState ′ = enabled ∧ aState ′ = received
∧ uId ′ = u ∧ jId ′ = j ∧ eId ′ = e ∧ cId ′ = c


presented in Example 4.1.

F.4 Bulk Updates

We want to unboundedly (bulk) update one (or more than one) artifact component(s) ri of
one (or more than one) artifact relation(s) r: if some conditions over the artifacts are satisfied
for some entries, a global update that involves all those entries (inserting some constant c1)
is fired. In our symbolic formalism, we write:

∃d
(

π(x1, x2) ∧ ψ(x′1, x
′
2) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s ∧

∧ r′1 := r1 ∧ ... ∧ r′i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′n := rn)

)
(38)

where x := x1, x2 are artifact variables and x1 are propagated, r are the artifact components
of an artifact relation R, s are the remaining artifact components, κ1 is a quantifier-free
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formula30, c1 is a constant. The artifact component ri is updated in a global, unbounded way:
we call this kind of update "bulk update".

The formula (38) is not in the format (6) but can be easily converted into it as follows:

∃d
(

π(x1, x2) ∧ ψ(x1, d) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s ∧
∧ r′1 := r1 ∧ ... ∧ r′i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′n := rn)

)
(39)

We prove that the preimage along (39) of a strongly local formula is strongly local. Con-
sider a strongly local formula

K := ψ′(x) ∧ ∃e

(
Diff(e) ∧

∧
er∈e

φer(r[er]) ∧Θ

)

where Θ is a formula involving the artifact relations s (which are not updated) such that no
er occurs in it.

We compute the preimage Pre(39,K)

∃d∃e
(

Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, d) ∧ (x′1 := x1 ∧ x′2 := d ∧ s′ := s ∧∧
er∈e φer (r′[er]) ∧ Θ ∧ r′1 := r1 ∧ ... ∧ r′i := λj.(if κ1(r[j]) then c1 else ri[j])) ∧ ... ∧ r′n := rn)

)
(40)

which can be rewritten as a disjunction of the following formulae indexed by a function f that
associates to every er a boolean value in 0, 1:

∃d, ∃e
(

Diff(e) ∧ π(x1, x2) ∧ ψ(x1, d) ∧ ψ′(x1, d) ∧∧
er∈e(εf (er)κ1(r[er]) ∧ φ(r1[er], ...δf (er), ..., rn[er])) ∧ Θ

)
(41)

where εf (er) := ¬ if f(er) = 0, otherwise εf (er) := ∅, and δf (er) := c1 if f(er) = 0, otherwise
δf (er) := ri[er].

We can conclude as above (cf. propagation updates), by eliminating the existentially
quantified variable d, that this formula is strongly local.

Notice that the previous arguments remain the same if r′i :=
λj.(if κ1(r[j]) then c1 else ri[j])) in Formula (38) is replaced by r′i :=
λj.(if κ1(r[j]) then c1 else c2), with c2 a constant. Even in this case, the modified
bulk transition is strongly local.

Analogous arguments show that transitions involving more than one artifact relations
which are updated like ri are also strongly local.

The transition introduced in Example 4.1

pState = enabled ∧ pState ′ = notified

aState = undef ∧ aState ′ = undef ∧ appResult ′ = λj.

(
if appScore[j] > 80 then winner
else loser

)
is a bulk update transition in the format described in this subsection, so it is a strongly local
transition.

30From the computations below, it is clear that strong locality holds also in case κ1 depends also on the
variables x, on the condition that κ1(x, r[j]) has the form h0(x) ∧ h1(r[j]), with h0 and h1 quantifier-free
formulae
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Table 2: Summary of the experimental examples
Example #AC #AV #T

E1 JobHiring 9 18 15
E2 Acquisition-following-RFQ 6 13 28
E3 Book-Writing-and-Publishing 4 14 13
E4 Customer-Quotation-Request 9 11 21
E5 Patient-Treatment-Collaboration 6 17 34
E6 Property-and-Casualty-Insurance-Claim-Processing 2 7 15
E7 Amazon-Fulfillment 2 28 38
E8 Incident-Management-as-Collaboration 3 20 19

G Experiments

We base our experimental evaluation on the already existing benchmark provided in [37],
that samples 32 real-world BPMN workflows published at the official BPM website (http:
//www.bpmn.org/). Specifically, inspired by the specification approach adopted by the authors
of [37] in their experimental setup (https://github.com/oi02lyl/has-verifier), we select seven
examples of varying complexity (see Table 2) and provide their faithful encoding31 in the
array-based specification using MCMT Version 2.8 (http://users.mat.unimi.it/users/ghilardi/
mcmt/). Moreover, we enrich our experimental set with an extended version of the running
example from Appendix A.1. Each example has been checked against at least one safe and
one unsafe conditions. Experiments were performed on a machine with Ubuntu 16.04, 2.6GHz
Intel Core i7 and 16GB RAM.

Here #AV, #AC and #T represent, respectively, the number of artifact variables, arti-
fact components and transitions used in the example specification, while Time is the mcmt
execution time. The most critical measures are #N, depth and #SMT-calls that respec-
tively define the number of nodes and the depth of the tree used for the backward reachability
procedure adopted by mcmt, and the number of the SMT-solver calls. Indeed, mcmt com-
putes the iterated preimages of the formula describing the unsafe states along the various
transitions. Such computation produces a tree, whose nodes are labelled by formulae describ-
ing sets of states that can reach an unsafe state and whose arcs are labelled by a transition.
In other words, an arc t : φ→ ψ means that φ is equal to Pre(t, ψ). The tool applies forward
and backward simplification strategies, so that whenever a node φ is deleted, this means that
φ entails the disjunction of the remaining (non deleted) nodes. All nodes (both deleted and
undeleted) can be visualized via the available online options (it is also possible to produce a
Latex file containing their detailed description)

To stress test our encoding, we came up with a few formulae describing unsafe config-
urations (sets of “bad” states), that is, the configurations that the system should not incur
throughout its execution. Property references encodings of examples endowed with specific
(un)safety properties done in mcmt, whereas Result shows their verification outcome that
can be of the two following types: SAFE and UNSAFE. The mcmt tool returns SAFE, if the un-
desirable property it was asked to verify represents a configuration that the system cannot
reach. At the same time, the result is UNSAFE if there exists a path of the system execution that

31Our encoding considers semantics of the framework studied in [37].
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Table 3: Experimental results for safety properties
Example Property Result Time #N depth #SMT-calls

E1 E1P1 SAFE 0.06 3 3 1238
E1P2 UNSAFE 0.36 46 10 2371
E1P3 UNSAFE 0.50 62 11 2867
E1P4 UNSAFE 0.35 42 10 2237

E2 E2P1 SAFE 0.72 50 9 3156
E2P2 UNSAFE 0.88 87 10 4238
E2P3 UNSAFE 1.01 92 9 4811
E2P4 UNSAFE 0.83 80 9 4254

E3 E3P1 SAFE 0.05 1 1 700
E3P2 UNSAFE 0.06 14 3 899

E4 E4P1 SAFE 0.12 14 6 1460
E4P2 UNSAFE 0.13 18 8 1525

E5 E5P1 SAFE 4.11 57 9 5618
E5P2 UNSAFE 0.17 13 3 2806

E6 E6P1 SAFE 0.04 7 4 512
E6P2 UNSAFE 0.08 28 10 902

E7 E7P1 SAFE 1.00 43 7 5281
E7P2 UNSAFE 0.20 7 4 3412

E8 E8P1 SAFE 0.70 77 11 3720
E8P2 UNSAFE 0.15 25 7 1652
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reaches “bad” states. One can see, for example, that the job hiring RAS has been proved by
mcmt to be SAFE w.r.t. the property defined in Example 4.2. The details about the success-
fully completed verification task can be seen in the first row of Table 3: the tool constructed
a tree with 3 nodes and a depth of 3, and returned SAFE in 0.06 seconds. For the same job
hiring RAS, if we slightly modify the safe condition discussed in Example 4.2 by removing,
for instance, the check that a selected applicant is not a winning one, we obtain a description
(see below) of a configuration in which it is still the case that an applicant could win:

∃i:appIndex
(
pState = notified ∧ applicant [i] 6= undef ∧ appResult [i] 6= loser

)
In this case, the job hiring process analyzed against the devised property is evaluated as UNSAFE
by the tool (see E1P3 row in Table 3). When checking safety properties, mcmt also allows to
access an unsafe path of a given example in case the verification result is UNSAFE.

To conclude, we would like to point out that seemingly high number of SMT solver calls
in #SMT-calls against relatively small execution time demonstrates that mcmt could be
considered as a promising tool supporting the presented line of research. This is due to the
following two reasons. On the one hand, the SMT technology underlying solvers like Yices
[29] is quite mature and impressively well-performing. On the other hand, the backward
reachability algorithm generates proof obligations which are relatively easy to be analyzed as
(un)satisfiable by the solver.
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